Skip to main content

A toolkit for estimating the correlation between variables

Project description

Correlation Kit

A toolkit for estimating the correlation values between variables

Installation

pip install correlation-kit

Correlation between two continual variables

import pandas as pd
from correlation_kit.ck_wrapper import CorrelationKit

# set a dataframe or read from a csv file
d = {'x': [1, 2, 3.5, 4], 'y': [3, 4, 4.5, 6]}
df = pd.DataFrame(data=d)

# set x label and y label for correlation
x = "x"
y = "y"

# calc
def get_correlation(x, y, corr_type):
    stat = 0
    p = 0
    if corr_type == "pearson":
        stat, p = CorrelationKit(df).get_pearson(x, y)
    elif corr_type == "spearman":
        stat, p = CorrelationKit(df).get_spearman(x, y)
    elif corr_type == "kendalltau":
        stat, p = CorrelationKit(df).get_kendalltau(x, y)
    return stat, p

# print results
print("pearson = ", get_correlation(x, y, "pearson"))
print("spearman = ", get_correlation(x, y, "spearman"))
print("kendalltau = ", get_correlation(x, y, "kendalltau"))

Estimate correlation between binary and continual variables

import pandas as pd
from correlation_kit.ck_wrapper import CorrelationKit

# set a dataframe or read from a csv file
d = {'x': ['large', 'large', 'small', 'small'], 'y': ['hot', 'hot', 'cold', 'cold'],'z':[0,1,2.5,3]}
df = pd.DataFrame(data=d)

# set x label and y label for correlation, which is suitable for binary variables
r_p,r_s,r_k=CorrelationKit(df).get_corr_between_category_and_continual('x','large','z') # large=1; otherewise 0

# results
print('pearson: ',r_p)
print('speraman: ',r_s)
print('kendalltau: ',r_k)

Estimate F value between multiple-category variable and continual variables

import pandas as pd
from ck_wrapper import CorrelationKit

# set a dataframe or read from a csv file
d = {'x': ['large', 'large', 'middle','small', 'small'], 'y': ['hot', 'hot','warm', 'cold', 'cold'],'z':[0,1,2,2.5,3]}
df = pd.DataFrame(data=d)

# set x label and y label for correlation, which is suitable for multiple-category variables
F,p=CorrelationKit(df).get_f_oneway('x',['large','middle','small'],'z')

# results
print('F: ',F)
print('p: ',p)

License

The Correlation-Kit project is provided by Donghua Chen.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

correlation-kit-1.0.0.dev2.tar.gz (6.3 kB view details)

Uploaded Source

File details

Details for the file correlation-kit-1.0.0.dev2.tar.gz.

File metadata

  • Download URL: correlation-kit-1.0.0.dev2.tar.gz
  • Upload date:
  • Size: 6.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6

File hashes

Hashes for correlation-kit-1.0.0.dev2.tar.gz
Algorithm Hash digest
SHA256 fd4a160d1a66562f4aad8cead59af64fc60662f43a817079b883406d7346e013
MD5 111eff214d2e95eb37da221a956c71c2
BLAKE2b-256 22e80cdf4358c79c9cd2f1ad51838cb0534dda517689c350042d7503eb05870b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page