Skip to main content

Cosmological parameter estimation with the MCMC Hammer

Project description

=======================================================
Cosmological parameter estimation with the MCMC Hammer
=======================================================

.. image:: https://badge.fury.io/py/cosmoHammer.png
:target: http://badge.fury.io/py/cosmoHammer

.. image:: https://cosmo-gitlab.phys.ethz.ch/cosmo/CosmoHammer/badges/master/build.svg
:target: https://cosmo-gitlab.phys.ethz.ch/cosmo/CosmoHammer/commits/master

.. image:: https://cosmo-gitlab.phys.ethz.ch/cosmo/CosmoHammer/badges/master/coverage.svg
:target: https://cosmo-gitlab.phys.ethz.ch/cosmo/CosmoHammer/commits/master

.. image:: http://img.shields.io/badge/arXiv-1212.1721-orange.svg?style=flat
:target: http://arxiv.org/abs/1212.1721


.. raw:: html

<script type="text/javascript">

// if loaded from obsolete readthedocs we redirect
if (String(window.location).indexOf("readthedocs") !== -1) {
window.location.replace('http://cosmo-docs.phys.ethz.ch/cosmoHammer#redirected');
}

if (window.location.hash == "#redirected") {

// modify shown url without reloading
window.location.hash = "";

// insert message
$('#cosmological-parameter-estimation-with-the-mcmc-hammer').prepend('<br><h3 style="padding: 1em; background: #eeeeee; color: red">You were redirected from the outdated documentation at readthedocs.org. Please update your bookmarks.</h3><br/>') ;

}
</script>


CosmoHammer is a framework which embeds `emcee
<http://arxiv.org/abs/1202.3665>`_ , an implementation by Foreman-Mackey et al.
(2012) of the `Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble
sampler <http://msp.berkeley.edu/camcos/2010/5-1/p04.xhtml>`_ by Goodman and
Weare (2010).

It gives the user the possibility to plug in modules for the computation of any
desired likelihood. The major goal of the software is to reduce the complexity
when one wants to extend or replace the existing computation by modules which
fit the user's needs as well as to provide the possibility to easily use large
scale computing environments.

We published a `paper <http://arxiv.org/abs/1212.1721>`_ in the `Astronomy and
Computing Journal <http://authors.elsevier.com/sd/article/S221313371300022X>`_
which discusses the advantages and performance of our framework.

This project has been realized in collaboration with the `Institute of 4D
Technologies <https://www.fhnw.ch/en/about-fhnw/schools/school-of-engineering/institutes/institute-of-4d-technologies>`_ of the
`University of Applied Sciences and Arts Northwest Switzerland
<http://www.fhnw.ch>`_ (Fachhochschule Nordwestschweiz - FHNW).

The development is coordinated on `our gitlab instance
<https://cosmo-gitlab.phys.ethz.ch/cosmo/CosmoHammer>`_ and contributions are welcome. The
documentation of **CosmoHammer** is available at `our documentation server
<http://cosmo-docs.phys.ethz.ch/cosmoHammer/>`_ and the package is distributed
over `PyPI <https://pypi.python.org/pypi/CosmoHammer>`_.

For all public modules such as PyCamb, WMAP, Planck and more, see the
cosmoHammerPlugins project at https://cosmo-gitlab.phys.ethz.ch/cosmo/CosmoHammerPlugins.

Contact
-------

Please contact `Uwe Schmitt <mailto:uwe.schmitt@id.ethz.ch>`_ per Email in case of any question.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
cosmoHammer-0.6.1.tar.gz (42.5 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page