Skip to main content

Cosmological parameter estimation with the MCMC Hammer

Project description

=======================================================
Cosmological parameter estimation with the MCMC Hammer
=======================================================

.. image:: https://badge.fury.io/py/cosmoHammer.png
:target: http://badge.fury.io/py/cosmoHammer

.. image:: https://cosmo-gitlab.phys.ethz.ch/cosmo/CosmoHammer/badges/master/build.svg
:target: https://cosmo-gitlab.phys.ethz.ch/cosmo/CosmoHammer/commits/master

.. image:: https://cosmo-gitlab.phys.ethz.ch/cosmo/CosmoHammer/badges/master/coverage.svg
:target: https://cosmo-gitlab.phys.ethz.ch/cosmo/CosmoHammer/commits/master

.. image:: http://img.shields.io/badge/arXiv-1212.1721-orange.svg?style=flat
:target: http://arxiv.org/abs/1212.1721


.. raw:: html

<script type="text/javascript">

// if loaded from obsolete readthedocs we redirect
if (String(window.location).indexOf("readthedocs") !== -1) {
window.location.replace('http://cosmo-docs.phys.ethz.ch/cosmoHammer#redirected');
}

if (window.location.hash == "#redirected") {

// modify shown url without reloading
window.location.hash = "";

// insert message
$('#cosmological-parameter-estimation-with-the-mcmc-hammer').prepend('<br><h3 style="padding: 1em; background: #eeeeee; color: red">You were redirected from the outdated documentation at readthedocs.org. Please update your bookmarks.</h3><br/>') ;

}
</script>


CosmoHammer is a framework which embeds `emcee
<http://arxiv.org/abs/1202.3665>`_ , an implementation by Foreman-Mackey et al.
(2012) of the `Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble
sampler <http://msp.berkeley.edu/camcos/2010/5-1/p04.xhtml>`_ by Goodman and
Weare (2010).

It gives the user the possibility to plug in modules for the computation of any
desired likelihood. The major goal of the software is to reduce the complexity
when one wants to extend or replace the existing computation by modules which
fit the user's needs as well as to provide the possibility to easily use large
scale computing environments.

We published a `paper <http://arxiv.org/abs/1212.1721>`_ in the `Astronomy and
Computing Journal <http://authors.elsevier.com/sd/article/S221313371300022X>`_
which discusses the advantages and performance of our framework.

This project has been realized in collaboration with the `Institute of 4D
Technologies <https://www.fhnw.ch/en/about-fhnw/schools/school-of-engineering/institutes/institute-of-4d-technologies>`_ of the
`University of Applied Sciences and Arts Northwest Switzerland
<http://www.fhnw.ch>`_ (Fachhochschule Nordwestschweiz - FHNW).

The development is coordinated on `our gitlab instance
<https://cosmo-gitlab.phys.ethz.ch/cosmo/CosmoHammer>`_ and contributions are welcome. The
documentation of **CosmoHammer** is available at `our documentation server
<http://cosmo-docs.phys.ethz.ch/cosmoHammer/>`_ and the package is distributed
over `PyPI <https://pypi.python.org/pypi/CosmoHammer>`_.

For all public modules such as PyCamb, WMAP, Planck and more, see the
cosmoHammerPlugins project at https://cosmo-gitlab.phys.ethz.ch/cosmo/CosmoHammerPlugins.

Contact
-------

Please contact `Uwe Schmitt <mailto:uwe.schmitt@id.ethz.ch>`_ per Email in case of any question.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cosmoHammer-0.6.1.tar.gz (42.5 kB view details)

Uploaded Source

File details

Details for the file cosmoHammer-0.6.1.tar.gz.

File metadata

  • Download URL: cosmoHammer-0.6.1.tar.gz
  • Upload date:
  • Size: 42.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for cosmoHammer-0.6.1.tar.gz
Algorithm Hash digest
SHA256 e2da9b9717584e4e1a9cef50fe18c86d9528b2e59454f70dc2ba182cfa527f89
MD5 3220ec7bd62ba10bf4bf9e9feb0c5d21
BLAKE2b-256 a5c8bde692766f7478e3dc65666970e435c0a29cb624325a8dab20eba1078295

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page