Skip to main content

Fast contraction ordering primitives for tensor networks.

Project description

cotengrust

cotengrust provides fast rust implementations of contraction ordering primitives for tensor networks or einsum expressions. The two main functions are:

  • optimize_optimal(inputs, output, size_dict, **kwargs)
  • optimize_greedy(inputs, output, size_dict, **kwargs)

The optimal algorithm is an optimized version of the opt_einsum 'dp' path - itself an implementation of https://arxiv.org/abs/1304.6112.

There is also a variant of the greedy algorithm, which runs ntrials of greedy, randomized paths and computes and reports the flops cost (log10) simultaneously:

  • optimize_random_greedy_track_flops(inputs, output, size_dict, **kwargs)

Installation

cotengrust is available for most platforms from PyPI:

pip install cotengrust

or if you want to develop locally (which requires pyo3 and maturin):

git clone https://github.com/jcmgray/cotengrust.git
cd cotengrust
maturin develop --release

(the release flag is very important for assessing performance!).

Usage

If cotengrust is installed, then by default cotengra will use it for its greedy, random-greedy, and optimal subroutines, notably subtree reconfiguration. You can also call the routines directly:

import cotengra as ctg
import cotengrust as ctgr

# specify an 8x8 square lattice contraction
inputs, output, shapes, size_dict = ctg.utils.lattice_equation([8, 8])

# find the optimal 'combo' contraction path
%%time
path = ctgr.optimize_optimal(inputs, output, size_dict, minimize='combo')
# CPU times: user 13.7 s, sys: 83.4 ms, total: 13.7 s
# Wall time: 13.7 s

# construct a contraction tree for further introspection
tree = ctg.ContractionTree.from_path(
    inputs, output, size_dict, path=path
)
tree.plot_rubberband()

optimal-8x8-order

API

The optimize functions follow the api of the python implementations in cotengra.pathfinders.path_basic.py.

def optimize_optimal(
    inputs,
    output,
    size_dict,
    minimize='flops',
    cost_cap=2,
    search_outer=False,
    simplify=True,
    use_ssa=False,
):
    """Find an optimal contraction ordering.

    Parameters
    ----------
    inputs : Sequence[Sequence[str]]
        The indices of each input tensor.
    output : Sequence[str]
        The indices of the output tensor.
    size_dict : dict[str, int]
        The size of each index.
    minimize : str, optional
        The cost function to minimize. The options are:

        - "flops": minimize with respect to total operation count only
          (also known as contraction cost)
        - "size": minimize with respect to maximum intermediate size only
          (also known as contraction width)
        - 'write' : minimize the sum of all tensor sizes, i.e. memory written
        - 'combo' or 'combo={factor}` : minimize the sum of
          FLOPS + factor * WRITE, with a default factor of 64.
        - 'limit' or 'limit={factor}` : minimize the sum of
          MAX(FLOPS, alpha * WRITE) for each individual contraction, with a
          default factor of 64.

        'combo' is generally a good default in term of practical hardware
        performance, where both memory bandwidth and compute are limited.
    cost_cap : float, optional
        The maximum cost of a contraction to initially consider. This acts like
        a sieve and is doubled at each iteration until the optimal path can
        be found, but supplying an accurate guess can speed up the algorithm.
    search_outer : bool, optional
        If True, consider outer product contractions. This is much slower but
        theoretically might be required to find the true optimal 'flops'
        ordering. In practical settings (i.e. with minimize='combo'), outer
        products should not be required.
    simplify : bool, optional
        Whether to perform simplifications before optimizing. These are:

            - ignore any indices that appear in all terms
            - combine any repeated indices within a single term
            - reduce any non-output indices that only appear on a single term
            - combine any scalar terms
            - combine any tensors with matching indices (hadamard products)

        Such simpifications may be required in the general case for the proper
        functioning of the core optimization, but may be skipped if the input
        indices are already in a simplified form.
    use_ssa : bool, optional
        Whether to return the contraction path in 'single static assignment'
        (SSA) format (i.e. as if each intermediate is appended to the list of
        inputs, without removals). This can be quicker and easier to work with
        than the 'linear recycled' format that `numpy` and `opt_einsum` use.

    Returns
    -------
    path : list[list[int]]
        The contraction path, given as a sequence of pairs of node indices. It
        may also have single term contractions if `simplify=True`.
    """
    ...


def optimize_greedy(
    inputs,
    output,
    size_dict,
    costmod=1.0,
    temperature=0.0,
    simplify=True,
    use_ssa=False,
):
    """Find a contraction path using a (randomizable) greedy algorithm.

    Parameters
    ----------
    inputs : Sequence[Sequence[str]]
        The indices of each input tensor.
    output : Sequence[str]
        The indices of the output tensor.
    size_dict : dict[str, int]
        A dictionary mapping indices to their dimension.
    costmod : float, optional
        When assessing local greedy scores how much to weight the size of the
        tensors removed compared to the size of the tensor added::

            score = size_ab / costmod - (size_a + size_b) * costmod

        This can be a useful hyper-parameter to tune.
    temperature : float, optional
        When asessing local greedy scores, how much to randomly perturb the
        score. This is implemented as::

            score -> sign(score) * log(|score|) - temperature * gumbel()

        which implements boltzmann sampling.
    simplify : bool, optional
        Whether to perform simplifications before optimizing. These are:

            - ignore any indices that appear in all terms
            - combine any repeated indices within a single term
            - reduce any non-output indices that only appear on a single term
            - combine any scalar terms
            - combine any tensors with matching indices (hadamard products)

        Such simpifications may be required in the general case for the proper
        functioning of the core optimization, but may be skipped if the input
        indices are already in a simplified form.
    use_ssa : bool, optional
        Whether to return the contraction path in 'single static assignment'
        (SSA) format (i.e. as if each intermediate is appended to the list of
        inputs, without removals). This can be quicker and easier to work with
        than the 'linear recycled' format that `numpy` and `opt_einsum` use.

    Returns
    -------
    path : list[list[int]]
        The contraction path, given as a sequence of pairs of node indices. It
        may also have single term contractions if `simplify=True`.
    """

def optimize_simplify(
    inputs,
    output,
    size_dict,
    use_ssa=False,
):
    """Find the (partial) contracton path for simplifiactions only.

    Parameters
    ----------
    inputs : Sequence[Sequence[str]]
        The indices of each input tensor.
    output : Sequence[str]
        The indices of the output tensor.
    size_dict : dict[str, int]
        A dictionary mapping indices to their dimension.
    use_ssa : bool, optional
        Whether to return the contraction path in 'single static assignment'
        (SSA) format (i.e. as if each intermediate is appended to the list of
        inputs, without removals). This can be quicker and easier to work with
        than the 'linear recycled' format that `numpy` and `opt_einsum` use.

    Returns
    -------
    path : list[list[int]]
        The contraction path, given as a sequence of pairs of node indices. It
        may also have single term contractions.

    """
    ...

def optimize_random_greedy_track_flops(
    inputs,
    output,
    size_dict,
    ntrials=1,
    costmod=(0.1, 4.0),
    temperature=(0.001, 1.0),
    seed=None,
    simplify=True,
    use_ssa=False,
):
    """Perform a batch of random greedy optimizations, simulteneously tracking
    the best contraction path in terms of flops, so as to avoid constructing a
    separate contraction tree.

    Parameters
    ----------
    inputs : tuple[tuple[str]]
        The indices of each input tensor.
    output : tuple[str]
        The indices of the output tensor.
    size_dict : dict[str, int]
        A dictionary mapping indices to their dimension.
    ntrials : int, optional
        The number of random greedy trials to perform. The default is 1.
    costmod : (float, float), optional
        When assessing local greedy scores how much to weight the size of the
        tensors removed compared to the size of the tensor added::

            score = size_ab / costmod - (size_a + size_b) * costmod

        It is sampled uniformly from the given range.
    temperature : (float, float), optional
        When asessing local greedy scores, how much to randomly perturb the
        score. This is implemented as::

            score -> sign(score) * log(|score|) - temperature * gumbel()

        which implements boltzmann sampling. It is sampled log-uniformly from
        the given range.
    seed : int, optional
        The seed for the random number generator.
    simplify : bool, optional
        Whether to perform simplifications before optimizing. These are:

            - ignore any indices that appear in all terms
            - combine any repeated indices within a single term
            - reduce any non-output indices that only appear on a single term
            - combine any scalar terms
            - combine any tensors with matching indices (hadamard products)

        Such simpifications may be required in the general case for the proper
        functioning of the core optimization, but may be skipped if the input
        indices are already in a simplified form.
    use_ssa : bool, optional
        Whether to return the contraction path in 'single static assignment'
        (SSA) format (i.e. as if each intermediate is appended to the list of
        inputs, without removals). This can be quicker and easier to work with
        than the 'linear recycled' format that `numpy` and `opt_einsum` use.

    Returns
    -------
    path : list[list[int]]
        The best contraction path, given as a sequence of pairs of node
        indices.
    flops : float
        The flops (/ contraction cost / number of multiplications), of the best
        contraction path, given log10.
    """
    ...

def ssa_to_linear(ssa_path, n=None):
    """Convert a SSA path to linear format."""
    ...

def find_subgraphs(inputs, output, size_dict,):
    """Find all disconnected subgraphs of a specified contraction."""
    ...

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cotengrust-0.1.4.tar.gz (32.2 kB view details)

Uploaded Source

Built Distributions

cotengrust-0.1.4-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl (497.8 kB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

cotengrust-0.1.4-pp310-pypy310_pp73-musllinux_1_2_i686.whl (512.0 kB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

cotengrust-0.1.4-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl (594.3 kB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

cotengrust-0.1.4-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl (503.8 kB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (336.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (450.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (364.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (342.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (331.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl (344.5 kB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

cotengrust-0.1.4-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl (499.2 kB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

cotengrust-0.1.4-pp39-pypy39_pp73-musllinux_1_2_i686.whl (513.2 kB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

cotengrust-0.1.4-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl (595.5 kB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

cotengrust-0.1.4-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl (505.2 kB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (337.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (451.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (365.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (343.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (332.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (345.2 kB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

cotengrust-0.1.4-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl (499.2 kB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

cotengrust-0.1.4-pp38-pypy38_pp73-musllinux_1_2_i686.whl (513.2 kB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

cotengrust-0.1.4-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl (595.5 kB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

cotengrust-0.1.4-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl (505.2 kB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

cotengrust-0.1.4-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (451.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

cotengrust-0.1.4-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (364.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

cotengrust-0.1.4-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (343.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

cotengrust-0.1.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (332.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

cotengrust-0.1.4-cp312-none-win_amd64.whl (217.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

cotengrust-0.1.4-cp312-none-win32.whl (208.0 kB view details)

Uploaded CPython 3.12 Windows x86

cotengrust-0.1.4-cp312-cp312-musllinux_1_2_x86_64.whl (495.9 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

cotengrust-0.1.4-cp312-cp312-musllinux_1_2_i686.whl (510.2 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

cotengrust-0.1.4-cp312-cp312-musllinux_1_2_armv7l.whl (592.2 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

cotengrust-0.1.4-cp312-cp312-musllinux_1_2_aarch64.whl (501.5 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

cotengrust-0.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (335.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

cotengrust-0.1.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (447.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

cotengrust-0.1.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (362.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

cotengrust-0.1.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (340.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

cotengrust-0.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (329.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

cotengrust-0.1.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (343.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

cotengrust-0.1.4-cp312-cp312-macosx_11_0_arm64.whl (295.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

cotengrust-0.1.4-cp312-cp312-macosx_10_12_x86_64.whl (313.5 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

cotengrust-0.1.4-cp311-none-win_amd64.whl (216.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

cotengrust-0.1.4-cp311-none-win32.whl (207.6 kB view details)

Uploaded CPython 3.11 Windows x86

cotengrust-0.1.4-cp311-cp311-musllinux_1_2_x86_64.whl (495.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

cotengrust-0.1.4-cp311-cp311-musllinux_1_2_i686.whl (509.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

cotengrust-0.1.4-cp311-cp311-musllinux_1_2_armv7l.whl (592.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

cotengrust-0.1.4-cp311-cp311-musllinux_1_2_aarch64.whl (501.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

cotengrust-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (334.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

cotengrust-0.1.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (448.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

cotengrust-0.1.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (362.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

cotengrust-0.1.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (340.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

cotengrust-0.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (329.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

cotengrust-0.1.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (343.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

cotengrust-0.1.4-cp311-cp311-macosx_11_0_arm64.whl (295.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

cotengrust-0.1.4-cp311-cp311-macosx_10_12_x86_64.whl (313.7 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

cotengrust-0.1.4-cp310-none-win_amd64.whl (216.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

cotengrust-0.1.4-cp310-none-win32.whl (207.7 kB view details)

Uploaded CPython 3.10 Windows x86

cotengrust-0.1.4-cp310-cp310-musllinux_1_2_x86_64.whl (495.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

cotengrust-0.1.4-cp310-cp310-musllinux_1_2_i686.whl (510.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

cotengrust-0.1.4-cp310-cp310-musllinux_1_2_armv7l.whl (592.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

cotengrust-0.1.4-cp310-cp310-musllinux_1_2_aarch64.whl (501.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

cotengrust-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (335.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

cotengrust-0.1.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (448.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

cotengrust-0.1.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (362.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

cotengrust-0.1.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (340.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

cotengrust-0.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (330.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

cotengrust-0.1.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (343.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

cotengrust-0.1.4-cp310-cp310-macosx_11_0_arm64.whl (295.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

cotengrust-0.1.4-cp39-none-win_amd64.whl (216.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

cotengrust-0.1.4-cp39-none-win32.whl (208.0 kB view details)

Uploaded CPython 3.9 Windows x86

cotengrust-0.1.4-cp39-cp39-musllinux_1_2_x86_64.whl (495.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

cotengrust-0.1.4-cp39-cp39-musllinux_1_2_i686.whl (510.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

cotengrust-0.1.4-cp39-cp39-musllinux_1_2_armv7l.whl (592.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

cotengrust-0.1.4-cp39-cp39-musllinux_1_2_aarch64.whl (501.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

cotengrust-0.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (335.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

cotengrust-0.1.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (449.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

cotengrust-0.1.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (362.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

cotengrust-0.1.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (341.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

cotengrust-0.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (330.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

cotengrust-0.1.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (343.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

cotengrust-0.1.4-cp39-cp39-macosx_11_0_arm64.whl (295.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

cotengrust-0.1.4-cp38-none-win_amd64.whl (216.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

cotengrust-0.1.4-cp38-none-win32.whl (207.8 kB view details)

Uploaded CPython 3.8 Windows x86

cotengrust-0.1.4-cp38-cp38-musllinux_1_2_x86_64.whl (495.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

cotengrust-0.1.4-cp38-cp38-musllinux_1_2_i686.whl (510.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

cotengrust-0.1.4-cp38-cp38-musllinux_1_2_armv7l.whl (592.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

cotengrust-0.1.4-cp38-cp38-musllinux_1_2_aarch64.whl (501.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

cotengrust-0.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (335.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

cotengrust-0.1.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (448.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

cotengrust-0.1.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (362.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

cotengrust-0.1.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (340.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

cotengrust-0.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (330.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

cotengrust-0.1.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (343.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

File details

Details for the file cotengrust-0.1.4.tar.gz.

File metadata

  • Download URL: cotengrust-0.1.4.tar.gz
  • Upload date:
  • Size: 32.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for cotengrust-0.1.4.tar.gz
Algorithm Hash digest
SHA256 364a7a272875e53da1cc9020f1ec9a8c043926fd00aec384504b880bfc9fff13
MD5 310ffbb739a42073035f0ec47661f14e
BLAKE2b-256 009cc5a76e34f55265698bbac00f0508feeb7030aabd1ce664736c0f00a29d30

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 90ef720acc940abdb5710c56bdada35de930a9dc26778dae19b9e26c1962636f
MD5 1b49512b2a544bdb5ea7112861e74d5c
BLAKE2b-256 6ffc3c225e591d0d067402e24044c5ffbe862a0849d22224770eb69b86ec047b

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp310-pypy310_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp310-pypy310_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 fee8f01e0d9ca5add1126141cca3e31e01cd5be2ecacd87aded0965d77165dcc
MD5 8074212c26f0cc9a1ea3c20732421066
BLAKE2b-256 c18b4ece98dc59e08469106d21476e7bf43bb29ce55b42cfe46970c53b6a77d0

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 e5dfd2ea51b234dc5138be92beca30caf3a2c9881726b0253705dbbbc8034a88
MD5 a5fbbf1e6c5530eacf331743305ba40c
BLAKE2b-256 b48baa22fc84bc956ff5e4cca206f987cfbf088e57edbd65e689790b4770c878

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 dbedd6ed18b59f3e179428d3d1ccfb2fbf3d4d5c8b5b3392fd4d625e0d8994e6
MD5 f2c656bd967aa5c6e1c6de1ef87290ba
BLAKE2b-256 5141088da3b7bcab393077272899a161766911b91f6fd50a4a1169b34f2a964f

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64c5491bb249dab004733fe8044594d23ed2e2f6ca8149caf981e965af36dc99
MD5 f5182c9f83bf8618a0be9ab46d8ecc7c
BLAKE2b-256 fc27987aafdd62763834c627d646ab25059dffc898e030dfebc4ad739712372b

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e8db878588cd96985c12ab7bb3f4c80eecbf677f627652ab511156049d6df1f8
MD5 c754f4ed9f2a1f6a651827ffe9db64e0
BLAKE2b-256 834df3e1102fdcf18b6798257969fbf5ed661cae576ef747ed29494744d8b72d

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 49c642ff991473a4bce747fd29a1fe86cce397d9b5f5faa44a1b9214b0bd3cb9
MD5 1c1129d8664c4b09f1a6d7476d08e25e
BLAKE2b-256 9fe2756b1ad35448603131e9749fb1bc4abb1c51ecacd89a9d66097f654716c1

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 ce206dd967891838c75e3d76c90ecca06a10e71d4a9908caccc011d609c6af54
MD5 27abd2b9b7a02751f12d96429d4e9290
BLAKE2b-256 ad80f7b1ae198812007cd6322750a7b6732faaa7067d28673f66e91a8932a9b3

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47b25035e9cac235351ea4fa4b034456dcedc4e4e4facb6166bc6376f94de0bf
MD5 df40f06dac58de9454812360ae90ebf4
BLAKE2b-256 ee8a7561304f9373771daf23f634b5755a9be5db58021c620f791780c6193a4d

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4c1e3bb9537a236cdb2299174d00968ad1cf42a566ed8012be08d3644900b5dc
MD5 a99a42b71afbb61f3c62f8482f2f8ca4
BLAKE2b-256 b2be3f4a9deb60dc3c08e4e13eca8cf9007bad2190ebc10560e077ceb228f721

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2227525f6a12a778acc5987f7fc329f95bf4b3157b5e2e97affaa82891cb718c
MD5 9179690f8d56f4321fa3ac66023181f0
BLAKE2b-256 5f966dc1089e1d1d793c1342d8337be4de619029ed6b419dce60681f6c19e45c

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp39-pypy39_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp39-pypy39_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a55087aa9db2d272e1f5af4fd2e65ce30f0d7b605f289272ca6aafb9c012d55f
MD5 074718253a75eb88a4606ce1d3f59938
BLAKE2b-256 4432c934a72d6480af842e03282e9d9a58d7d2d39fb1c0023d0ea6d574d6da36

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 b852f8cec5025f31d19ef4e46b2603c0e97d30c2d71714e023cb62b71091153e
MD5 9b6ec9079f2bf5d0ed71b8adf485d6ff
BLAKE2b-256 4afcd413dee850943df3d73633f9d1016827d5fb79ac52feee931423c18b23a0

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ecedb21d8b149635c21413751633a23ddaa53bbc7dda496ee48e88b6cb9eb559
MD5 0bdbf1ff94be1df8acf9844e109f92cd
BLAKE2b-256 72f62d99d286176af03567089ef707dff740b8e128cedce5f0f8155fe01bdec1

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ac8b4e74938a0004d29640140ec0209533f6937ff6c4cf51f28674bb31bc582
MD5 f2c97bb2f23cb2b3446062ad124898e5
BLAKE2b-256 626696310b40a84d4890857d40d6266356c09e864f33c7ea19a9102f1311c318

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 dd9ca1b92b922d1965844ff321ffeac6d19a4bbdefc03ae8c297305887fc8615
MD5 45e8dd6bc10d3c1c964daedb034d839a
BLAKE2b-256 b3ce011c68c72f5866ab1a5b6872014fcc42000ddb81926fea7f43314c243b89

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 fb01b05b0926f427de9dbc2adfd500be41cc64b4e8cafff32fa38a4734aede44
MD5 af3dd9c554d26587316df7d890bd1a88
BLAKE2b-256 44da2d12c4b643bbe17b77afda9c31b14207596b453834c82bfdf364d3cdb21d

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 280f7d9b13393ab2bc1eb9759ed8c4790f6d9c8a59bb1a76543fde0c031a5496
MD5 6f282eabb31e3874ea5e8594bb3b0ed8
BLAKE2b-256 c0f56d8c52b03d57c53067c97a012650da4aa5ee468dd5bca8befa39074f07a1

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3fb686abe8830c688fc19fdea719b525a3f0576b1388a8837bfdee56547540b3
MD5 4aa3dc94152ab8c6dcf48b62a482a399
BLAKE2b-256 d58f5a86274f27f0749c6228cadd672cd9f3474808121e0e144580be7129698f

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0cc8aa1f079f3161ea9153394bc38351739fe44fcabaa07dbe9c9df1b250fd6a
MD5 8480b94e5654b55e5e9f33268482077b
BLAKE2b-256 028461f9af7b023a7e64ec630ee7fd4fe46ca3751ad93f608c4d9dab96711fcb

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6bfc6b0bee5dfa986b3690c761b103795ec7452dea2c746b8a000409c251d38b
MD5 d556150c2de835329aac4052a8b552af
BLAKE2b-256 e0f96971e87c126dfc86f7c8474c03ef71401bed971c6df8f10e7c6699ff6da3

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp38-pypy38_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp38-pypy38_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 40ef7319bedcc77b45f04efe925fd22f0178ba8a5c4c5ed95c90a06515fb69cd
MD5 a6844ee0e61c8ba2ddffdc99b9f42ce1
BLAKE2b-256 f13b3f3a542a1fa822b2cf1a67c31e70bfcd2c9578b99d684c6f2b7f0c3af313

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 8473d02608d286ab6f28580be8b5e8aa3b317164c48b5ceb25823ec9edca1e16
MD5 5aebbd580cf944c9b080d6768c5a2e4d
BLAKE2b-256 a3b9b4bcf2ec560e069717d5eac620a397a1ee86acb12d9f3b2d75dee20e80c5

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b3dbf2e4b735c6348036546212581a765f819a787989d5e3085cf2da75559b46
MD5 214c95d163ba2b083beb75f414844f7d
BLAKE2b-256 fcd8a5571fb02c9bb77801ab8073556dbc89bf4c2318f37d910b66035cf81fee

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 dc9dd23a25337c5ee81cc6cdb3f9b47899e91da1e588eaa842993aeff5dff2f0
MD5 4330a5930e83963b7e33bd8179f736f1
BLAKE2b-256 2ae056c6788d83aed812aeeeb0941b4bdc38b77e87c8482eb34a7e7c6b718777

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4fc12c90a49da97e2599eef50beef7f753c5176c6779c59be817bd7e7a5fa330
MD5 c978b025ef9daa377e4d5c5c1670be11
BLAKE2b-256 ad3c76edbd49663c90fce340ed9efab159bccfe4a1286bede0c50c77ab566c5f

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 f1f99ef9fd1dfbb5d876c1b7dd90cf9b765e667ed8f7a4c104b402e391e12ab7
MD5 ebef8e61b75c4d49fe5c3d5f91e40c50
BLAKE2b-256 063101ca4947b31257f46dc1cc01a30f7e825598ece8b5dbe41c87b710e01e56

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b7b4e8ef77aee51ebe8cc1896ecc9e81c6d0f0400ec19fc9fb053cac8936fd7e
MD5 339e516ace3ec2a2dcd24612f7dcd170
BLAKE2b-256 803700e312c5ae22b85df99e7c340cfb9be871bf835ff6bc45c29cc0890f740e

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 ccffc8b0645311a77dac88cc852ef56d18bd031430bef90e9884e98e4b438afa
MD5 4d414032bdd378594241b6a8f2fb9116
BLAKE2b-256 2d0edec49fd6f17f036128be22462eb1d6d1b49abef75eb90d7e5018e7272c03

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-none-win32.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-none-win32.whl
Algorithm Hash digest
SHA256 0b8d99e943bc8db3df1aaa9295c4a644894ca973a45ee197844fd952da82a7ab
MD5 1e93c7b04a836c0456a19c26affb3520
BLAKE2b-256 716ab18e11140c0379c1e2b5e14af8af5f867f2801573ef3c2eca590ea6e7a56

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bafc5126b10fcc06c0968f605074b833388b8543c302e8fe67f63d3842c95274
MD5 a905a3e9447249816c07d692b9b1400b
BLAKE2b-256 df1bf46e4a4af3aa86e4c9c7c290efb9881f093ec20a5ed952b80105c23532a3

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5c5a248b23ea4af4e7f6965a519576bdec825dc0d034cfdeaa96a8d94b11b1e6
MD5 6bf5fbbabcece10b736f15922ac94cd8
BLAKE2b-256 a80444e98b677d6b9c2349b3f2db2c5fc082da9c33f4238a6fdd279dd2789d8e

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 2178d9a2d3b8c25fa497a363412bafb7c065e47040ea2c2318d03ac4279b455d
MD5 faa15f334f14ba70444fab8b503d2d46
BLAKE2b-256 2df5d109f44eb2a46ad28255426cb210b9dfa218665660b9cad8310c922c2030

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 09888f38816ae58686e2afcbd8f58c9842c96d4effadb29c9d1d34d5afe3692a
MD5 c59839524e64a819815dbd4fbd0592a2
BLAKE2b-256 8be4504940d77413ae9994db0beebb77661492fb64ad6fa3ffced1c9a0d0c6c2

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a568c659e37aaa3384cd47beb91eabe7390ba45ec75f1414bd22c0707c0cec19
MD5 25d86e010e906193046172adaae832b6
BLAKE2b-256 90489b6c94f507e6da0d962b38ad07064f17a7ae8928dbc422c326d7ea23aa8e

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6487c8e6a9e772d98a008fc7462a7aedabea7697d7968b1c373d917277615c6b
MD5 b517aa082189aeaa0b360ac74426f32c
BLAKE2b-256 bc7da869684938a353e59f2afdfe23d652bfe4f93c7a176e5a85ea0ea6818c3d

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9d8f7245a4aac1df74bfbf9cc232e8c7bdfc0de2993a777aec723ab4de6bf600
MD5 324ea87b6300bfd16ff04f94439e1958
BLAKE2b-256 328c8b3a1e22223109cb0c7966ddfab78740778562f155cfb575027f63ff49d0

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 52ed7ed4a1d72dfdb2fa74d243f667724ed6f2b2ba296d436f6da6e866d0143a
MD5 a3f616d6dfb8ba2b15eb71228b3e7b55
BLAKE2b-256 8dde168622ccb0b65197eb80c205d98e95cde40d749299396923d2bc680e7b01

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bfe35dda519eebbad3ab33f56b4e054fb22574fa440cd2cca75649b4d5f931de
MD5 7d6eccd2fafd43e57a1dc1b44842afe0
BLAKE2b-256 221a1a73ed6c239404af34664e7c6ff230f986f4c5548c62204ddd243733a204

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 88e8811347a1a946417e7001e3acc24cff252226ee2d5e436b1f897003e96767
MD5 abadb36b1e71b733767fcec1148fc38c
BLAKE2b-256 e234d5e797f492b24c0572db924639b8c99021065ef53f5846ab889ec2470432

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a9ccf7644a1db943b952eb2d8bdd97b3138ddfe19f16bc161694d9a7f0cd243c
MD5 1874c30a0b5df414d343756ef43e0e8d
BLAKE2b-256 54df212db67e856287640571ddc59e117cdee867257d4abe9e0e8616c2982831

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2ee3170efbc88b48b8a3ef5e77abe87eb81a1062240ea396b0937c820022924d
MD5 53ec802e70f42305c15605045cf83cef
BLAKE2b-256 4534f63ce60420dfd9f1648cd2b36b697d37ecb94e3ac461f317a44ea1226fbe

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 e0ec8f14f2e890f64c4d5bfa56644f5216390099c79507a1e853fd2b81a4b5c9
MD5 a5d41032388ca32202458c5f6eee382a
BLAKE2b-256 9fa388b2e24a0f7e45d762b1617a4607c041d79508239bb0d6010f9970def4fe

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-none-win32.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-none-win32.whl
Algorithm Hash digest
SHA256 3f4c9719638138ee2508780e1184ecb41430b1fe0bf6c7573b8a9cf810f032ef
MD5 fdb5f7a726b36c1d36311b63519182b8
BLAKE2b-256 1379ffa936cca90b12f7c6ff084c91eb249b7411a30ef9f4aee861340ef6a99b

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 87473955319f2084060c6f4abca943f5d9cca8e8731b74e7868738cc1f74fbce
MD5 493d739097db4d10bfcf0abd278cb34b
BLAKE2b-256 057bdcc10d55c8a32ef1a4dbbb0c844a49acd36a138cd8d2fb5218c75906b1e3

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f468f4b33ccb48b799db55efbe95eaec942dc152b31f92d7b487a75a66d6c6b6
MD5 03e0c651620d4a0f0c9cf4e80f570893
BLAKE2b-256 9c43f5edeb18e6c16d39279fbe473098ab43c3bd212fdd11d31c363f88f9c66a

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 52d641ea8f3a972f85db3497c001c41e67686fbedb7a2f37253271653b2b756f
MD5 cefacae0d73624cdffbfdb7866b130fb
BLAKE2b-256 7d7b8ee9ae88134d9a288815e2877d68e05749138791d21ccf82cf353a5a2d6f

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4cd5f16b3d52d8cf1caad613ac9bb088b338f26df06d3678f77f3cc8055e9a2f
MD5 1fe65acca71ef24da08423706a23369f
BLAKE2b-256 6b2a4215a295d2945bd0df91bd6401c7a8b2f88c8e71560413e4e9224acdd74c

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3005ba95bc50b179d6671d4f2c9c05206b2266feb1818a197c8b89fe9c0ea434
MD5 93d15610f5ba1de8f2c7b28068aab6f8
BLAKE2b-256 f84e1989ff4b5a6bba9fbfb2eb97f78292131591fc1a3646887acac51e6f7ee7

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8ddc2aa2f4316d13177b2b464647af03073ecef77ed8e4c4beb43bb73d75d6a6
MD5 0744148606fbe6609fbb76bb4d93a139
BLAKE2b-256 ff91d00ddcc9a0afafa3fed55a0919e62552b3862105afcb286296c26657b8c6

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0ea18106b20f69fd70beff1b27899226d99357a4840009e5dec9965e103948fd
MD5 a2e80fbb1635898b58885226eba2e918
BLAKE2b-256 ad8612cc03e08946ece78c6a3b92ab1772a38243e27e6bd3580277103dc97535

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 e4081a7ec6141e03d3b2b625e55071253b4f58e93839df368fdba1dc2e796d7e
MD5 b95bb6853e8b33c8005446ba10418b49
BLAKE2b-256 f518329a8f213f73df9d6653c934c4644c08a2b97b34caf8de7dcbe8c073bf61

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 66aee4dd61147239fb6795a8078799d4508378a506f69c3b9f8056f5e2a978a5
MD5 2f4ad4f002f1c4abb014a184570220d0
BLAKE2b-256 a3e65c74a19f51a1512389813471958faa1ba8b7622e18b3f0d260bc386a740c

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 607ad12b614698b324a3ca8daea85fbdb9b58f9a943cc47217896e5086f99008
MD5 0d973f7463c6b206ac108280b8185426
BLAKE2b-256 293a3e35db6553d505ec0e6a71353829cec5ef8108006f2f62795a2a1d8c24a3

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6517c63240abd6011949587f0d673f66e0329a1d65bb8a33f0dbaaa010ca75fa
MD5 8055e525209d93063749b1796ea06e2b
BLAKE2b-256 83dcc8ac6d02a1614fd06826264024e34b970ebb020bff6502453e38021000e3

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 731453be64c3beafc5f1e71674332c8349a5210fd25286008aab4841ea52dd52
MD5 77860bf24522be73dd002bc1dc811673
BLAKE2b-256 7ed660285d89b100f4160988ec3659ff76e50da0f59d0529ed78a4e1c7186a7e

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 4bc6bc9ac1da0de6adef9f43b0cf2a85c8af95bd696134d3baf5d73ac0b73e72
MD5 2594284e809189ed2c15bfff4a316ced
BLAKE2b-256 f274c244313678d62b8ab0cc4e2bd6750fcb5fd46aa2148737ed832e18969d43

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-none-win32.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-none-win32.whl
Algorithm Hash digest
SHA256 336b1f11dd050760128e424d7cd7960a20d1ee9517e1738311464a04ee268105
MD5 73705ee759ccf4d076cc2919789a4e89
BLAKE2b-256 e9d484dc2a40ffa5a6126e409454e4ba1f38a7cbc6b2c6f2203d2f114c392b1a

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e81d7fb18c321e720626959683ddc5997750aa5b6d22828bbf1f0e6d6c72fb43
MD5 b4afc759b969c5a104b34945d7c45344
BLAKE2b-256 36f8e8ddf38cd677857d9cc934f1392d29a6cbe6a3a57c74eed2ea563bb536ab

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 3fbcbcacc8ebdaae4ddf13a38b7135b4a38295b3cddd930276cd52334f1bc64e
MD5 00259771fd843155c7d9658d58abbab6
BLAKE2b-256 7f6abc2ebe54504df77b0edc900ab2c233e0c8ec0cd8b1886860865fcee65076

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 1470d08bb3e997569561745d8c47a7b73c70363fd81b51625a9a3cdb36f9a539
MD5 82a00175a3223b2c702a6679ff177265
BLAKE2b-256 b6fd079c5fcd0e6950f9f96389717decfc3d0d724c5fe8247f2bdd64ac6cf09b

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 68e8bf021e385b54d8463493493e86f681a9584ace24048a150090697e1e33fc
MD5 e974be4cc5ec5ef7617d8168114f2c8d
BLAKE2b-256 d812d6eed027983fb9f2e65592f8cb74a5f0c779120b7762f3ae80805c00e733

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38ca883176e72291c21ae6867c4cc2bbe53399b5430e541165fa56fc787f2afd
MD5 8758bc65f02c230387edbbb3fda411ca
BLAKE2b-256 15f8e6242cd4341830f37e3e6df432a576009b5860405d6c935e2c80e38d4bea

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1acfb38102d7a710cc63074bcba33a881312de6f1e17f0567e6ac75d1dbe7dad
MD5 23eda2dd33b05616969862e2b873071b
BLAKE2b-256 03595e5d36246da9d33205a019331c1a065f8fb311ab3c093f40d250d5e1d60a

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 887ac6b42b2d6422fb654fb75b8a679ab72609a2035c515e321985d0bbaeab66
MD5 56fda1ef97e0dede809a32cf3507e252
BLAKE2b-256 7cd5e303ba33513e64421cd8cc879035285916ee82fdd62ddd9322596e613787

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 83295c14697cc03367a64aab6df6bd1716d6d6e437aea875154f23bd24df1657
MD5 58c2172da54cd8962b61103a5111cdf5
BLAKE2b-256 26bd280180dfd6f6078dac77e5993f04c4f4a11a5b9cfa8971e7a782dd546660

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e02c96bf3d489276a5854723a5160514d1d4e041c76b2f87cdb141c11d0b2073
MD5 e6079fb995dc0fe0b9c21f25f1fa29d7
BLAKE2b-256 d9c696453daa89792a0ce0597165fdcad5364536fb330b0aabd25d3efef0141d

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 377570a3d2c5776aae81fa19d8bce25520230444d32971e9801d329ab2dc5c64
MD5 69e2bf65e9883b0873d47d692b72e4b2
BLAKE2b-256 1fe30c5e04fdf44c0def0db15c8ddf8ff266163fd137c1849500d9aa17f683c0

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8098a3f1f662ffe62b3808544faafcca6f6e9b32a47c1bee7a11b39d0297080d
MD5 db53484c524b2e23f97406e42ce4271b
BLAKE2b-256 4cc867b78e2fed766526e8613e2ddd9503b73faa6eec4f1afcb979055f75d68b

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 00e1ef75e745e6675be276758f87b68ae0dd5b8af6e24851eac3065a9a08b98d
MD5 ec9abe1be87ee6f20588a8397651ee6b
BLAKE2b-256 eeb7bd3eb2a06c87ff860c85a07263da80f0f0a221b75199e06cb29788fcb336

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-none-win32.whl.

File metadata

  • Download URL: cotengrust-0.1.4-cp39-none-win32.whl
  • Upload date:
  • Size: 208.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for cotengrust-0.1.4-cp39-none-win32.whl
Algorithm Hash digest
SHA256 82571b71c278e91be81c4871d109a87a58212ef325a653ab66ec5caca9dd95a8
MD5 e2032f23faee2ba2b78f7aa3cc7f4ca7
BLAKE2b-256 219b4470a4e8a6932e550781d74ffd1fd8a4271778d4d27b6a04457f0bd38f50

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5417ee92438e8734d6178f38fadfada6b7215a7a2e8c99696c81cd5bf20c9d9b
MD5 92a73b9d08429b8076407d747ccf6de8
BLAKE2b-256 69340205627d78a051b5958648116ee931a0fd8f7950c5e82564e74271a18241

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 37ced60132218306acd213cff0284ca823c97a3c78648187b04183d4f746a39c
MD5 9e44b85600af675f16c92a07cdcaf0a6
BLAKE2b-256 5f7579c966350f2f8aa1cdc75977373f808f253286ea4dd6fbe9ac6e9c1cfdb7

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 2504b9fbf4d5ee931468cd203680ecceaa5e539841a7ac842d57ad7b94ef0a88
MD5 500dc8b9d05f552af61109ce91db8d32
BLAKE2b-256 df477921b59851bbd4745f352e4e01fa7c6836f035f99ecc6a8298113565e7e9

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e9851b677294d593092e2405514590a4e1870d9d4b6b5279d92ab23924ce95b5
MD5 9f8d1d438414e3d9efbeb7b451a48ec1
BLAKE2b-256 90e2322ae4708e69526ca29c8a468c8c0d628f8a9ded511df9959f9ed2edf5e2

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 357e02404a7d6eadf6d92022ad87ef76f63b28b1133af81ae2353733d303cca3
MD5 5ade1fa439b554792945a008e05dff21
BLAKE2b-256 4d259322b47e4bc6af7298388ba75565df019154d21c718c03a919c3ad0b8e4a

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 aa22f567edd6ee4ef3e3f1fc1203a2cc8d6885617346b28cae93b05d5c5d54ff
MD5 1fd07b1e83c9dc47171af04112a6b28b
BLAKE2b-256 9544df9aee5bdf8646ff501c771b686db07cacc77f13fa928cffeab7237ee7fe

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a869edaf1221db33b69fa315a86bd3f3148fd0d8490efa1d0eccd42488027b43
MD5 425a6180bbdbd269b25e81ca51b647ec
BLAKE2b-256 b6979271457d8f4dbb91a0a3ce0cb19955f8d5245000f0c83ff0d8f386553447

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 49c22f1b4713ba6bb66eaca9cdb10e4310a0d6272dfbfc75f9d50b841ecc3ae6
MD5 6e95e7195bbf9f46b80beb230ebd65f8
BLAKE2b-256 a7baa6a3ae83e8f95d80292101fac8709dfd6270894534f32a5872a82fb55425

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9cd0188d3342e4ff81c1759c711d6e8b6bcc3ed3ffa740d5ea5ca5ba850ee8e9
MD5 984d5382ff91f785b1e8d53d84b20443
BLAKE2b-256 68ae7f8ec1995b3bd40632c84f556b31175ef97a8e86d68264d8f476745feb3b

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2d87480622d06a12c577abcc929ba6e11d62a3e011b2007bb24072681cfca978
MD5 2de7b8cc58d2bc50f8d7078f3263a390
BLAKE2b-256 aa0bfdd572360dc2a706821f96a6cbc0bd9d7870a6aed9498349cedc3cd98c8f

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b32da0881ea3f02fef991b9231168aa2adcd6a00cd1076dd65d6ad693bdb3672
MD5 574b6a75f543879b4913337eb429967c
BLAKE2b-256 a9312cd6b0b611eb39cb14946b11dd8fd9fa25d63ef0ba8ef9e1395fa87e00e6

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 9639376fc5af8652bb376efbcc06068faf08e5d1e1b0e546a327adb058c92cff
MD5 3ba5c0715481cf0e9f8fcf8798d3f0ac
BLAKE2b-256 e2ff4f18ee41a149cb7371455fe3c4da32e99593e5130e54d0f59c0b90122972

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp38-none-win32.whl.

File metadata

  • Download URL: cotengrust-0.1.4-cp38-none-win32.whl
  • Upload date:
  • Size: 207.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for cotengrust-0.1.4-cp38-none-win32.whl
Algorithm Hash digest
SHA256 6aed12cb238637e5b44a299a533caed23014a3df6cd99bb91bce48e49ce642a4
MD5 bf053d569f3f24d37474db47db913c20
BLAKE2b-256 768a416a87810b60067addd32ed0fa0640a448c1c3fc7d22dd59df61407269d7

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b755453e46dca12d61f011a4e9a0ee001fa66cfe016f4d3c664cb3f98bfe8627
MD5 a0a7cc0abe9f2496414d68d150ad06a5
BLAKE2b-256 6787e94e2e9624167a78fe0f7ae372df9d3c22cda75a95b8fe75ed035d6463b6

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c8a473993f7fa9a455da6b5dd6f78707c408056539189c9cfb0af25f69dd645f
MD5 74c464bf78f5b0800b0818c520a60029
BLAKE2b-256 f464e457f726f572a1eb3a09f8b9581d586f3ff7bfbf21fb53f5650d5f5bda2f

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 cfaae0b62fa3f886761f68286d45b5d5d474bf364a60e109b34265efef5e4d35
MD5 a2f21109f85ac7d3d17ed8e9e7b0a53b
BLAKE2b-256 7ade31bfa747a301eee2b8e563f11a48de4b98853674d68810fd71aac9d3c75f

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f61dfc40a2cb4fa1b162e875a6b77500d7af079927ac8e664d5e5cdab9b1b3be
MD5 de34f12d71f4e4e2df8e8586dae7457a
BLAKE2b-256 008ece41a2c1e3d7fdbd1cf7774c5e04ac88a57bac026f42a993b7424625b740

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec4479de6aab8a2ffddeae4afe68df8f01f1443986586055a1108a79ac234c71
MD5 d262dab2ee2c55966fc69503b3fbb062
BLAKE2b-256 e4aff8e44de25cf1568ce2636a26a05182eb3d37a4a764887e196e6fab4a356d

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 816f47075aaf8e624eeb998a234359fd478b40cd94a54d6409702e3e07566d07
MD5 c00b837f02851d313f3f0238b0bdd94c
BLAKE2b-256 97dcd39b07abe16bbb9724fb008a4cb0b90cd0733fdd06e214eaf86fadc7160a

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 321eca98afd7e8fae50ac65663fde7e65c5166e5c5a267172dcaaf59a7ecf139
MD5 59e7940ebb69bcea84f2a321f4dab11b
BLAKE2b-256 e45bb0ef48e16faf048963ff5146541fa598602c4a6f2e1bc49135e3182bc2c2

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 a377fd9d05e934421802960b6370b2c672e9b092a78db8d015f426105832d732
MD5 f15d6b11031c2f979ff34cb46c7ff0a3
BLAKE2b-256 6a476ec2f09894dc880ddeb215180787f8ba7e27851942c59a4d1a86069651a0

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 669da064832fd27f373bab4f8a3da2601fae53926f854601116764f1ab9c12ff
MD5 1392b2a798cb6081326761a31eaf3861
BLAKE2b-256 f29664058dfd3f4dcc383a9a5a76fa47c060e87445c9274d40e5bacd319233a4

See more details on using hashes here.

File details

Details for the file cotengrust-0.1.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.1.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b0878717d06c26d9bdf9df8f9f350da2c26b3260dc1d1b807fd97a0c6e3c0c72
MD5 a93e95b5029fa13478fffb4ba1e6fe89
BLAKE2b-256 2e33bbd4021efef006090146d2a2165401e33b0662ccdb0fae4becb19b17a9e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page