A small ML serialization software
Project description
cov-estimator
Simple estimator module for serialization
This is a simple library to build adapters to construct complex estimators using sklearn models as well as keras.
Basic architecture:
from cov_estimator.nodes import Estimator
from cov_estimator import Pipeline
img = "path/to/img"
img = load_img(img, (180, 180))
img = np.expand_dims(img, axis=0)
est = Estimator(
(
lambda data: {
"pneumonia": data["pneumonia"],
"covid": data["pneumonia"] * data["covid"],
"normal": 1 - data["pneumonia"],
}
),
"mult_1",
)
covid = tf.keras.models.load_model("path/to/model_1")
covid_est = Estimator(covid, "covid")
pneumonia = tf.keras.models.load_model("path/to/model_2")
pneumonia_est = Estimator(pneumonia, "pneumonia")
est = est(pneumonia_est, covid_est)
data = {"covid": img, "pneumonia": img}
model = Pipeline(data, 'Path/to/save')
result = model(result)
print("result: {}".format(result)
Whats happening?
Basically what the library does is create an abstract tree of dependecies which evaluate each node. For it to properly work, you need to pass a dictionary containing as key each nodes which expects some input. You can use, lambda funcions to apply some important transformation. it will always get a single dictionary as input, the dictionary will contain the outputs from each correspondant node. Obs! Each node inside in the graph must have a unique name, it's the developer's responsibility to
Stack:
- Python 3.8
- Virtualenv
- tensorflow > 2.0
- numpy > 1.6
- sklearn
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for cov_estimator-0.0.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd499e0d081e77373d465f5056731c5fd814e4033363df6a85bae7f7e0a196f3 |
|
MD5 | 9b4ae7485456086baaf49637ab0434ae |
|
BLAKE2b-256 | c8c4b2335f964d5fa9e6f7791e41a37327ba96aabf6b2e1722f1b10c7cfba9f2 |