Covalent AWS Batch Plugin
Project description
Covalent AWS Batch Plugin
Covalent is a Pythonic workflow tool used to execute tasks on advanced computing hardware.
This executor plugin interfaces Covalent with AWS Batch which allows tasks in a covalent workflow to be executed as AWS batch jobs.
1. Installation
To use this plugin with Covalent, simply install it using pip
:
pip install covalent-awsbatch-plugin
2. Usage Example
This is an example of how a workflow can be adapted to utilize the AWS Batch Executor. Here we train a simple Support Vector Machine (SVM) model and use an existing AWS Batch Compute environment to run the train_svm
electron as a batch job. We also note we require DepsPip to install the dependencies when creating the batch job.
from numpy.random import permutation
from sklearn import svm, datasets
import covalent as ct
deps_pip = ct.DepsPip(
packages=["numpy==1.23.2", "scikit-learn==1.1.2"]
)
executor = ct.executor.AWSBatchExecutor(
s3_bucket_name = "covalent-batch-qa-job-resources",
batch_queue = "covalent-batch-qa-queue",
batch_execution_role_name = "ecsTaskExecutionRole",
batch_job_role_name = "covalent-batch-qa-job-role",
batch_job_log_group_name = "covalent-batch-qa-log-group",
vcpu = 2, # Number of vCPUs to allocate
memory = 3.75, # Memory in GB to allocate
time_limit = 300, # Time limit of job in seconds
)
# Use executor plugin to train our SVM model.
@ct.electron(
executor=executor,
deps_pip=deps_pip
)
def train_svm(data, C, gamma):
X, y = data
clf = svm.SVC(C=C, gamma=gamma)
clf.fit(X[90:], y[90:])
return clf
@ct.electron
def load_data():
iris = datasets.load_iris()
perm = permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
return iris.data, iris.target
@ct.electron
def score_svm(data, clf):
X_test, y_test = data
return clf.score(
X_test[:90],
y_test[:90]
)
@ct.lattice
def run_experiment(C=1.0, gamma=0.7):
data = load_data()
clf = train_svm(
data=data,
C=C,
gamma=gamma
)
score = score_svm(
data=data,
clf=clf
)
return score
# Dispatch the workflow
dispatch_id = ct.dispatch(run_experiment)(
C=1.0,
gamma=0.7
)
# Wait for our result and get result value
result = ct.get_result(dispatch_id=dispatch_id, wait=True).result
print(result)
During the execution of the workflow one can navigate to the UI to see the status of the workflow, once completed however the above script should also output a value with the score of our model.
0.9777777777777777
3. Configuration
There are many configuration options that can be passed in to the class ct.executor.AWSBatchExecutor
or by modifying the covalent config file under the section [executors.awsbatch]
For more information about all of the possible configuration values visit our read the docs (RTD) guide for this plugin.
4. Required AWS Resources
In order to run your workflows with covalent there are a few notable AWS resources that need to be provisioned first.
For more information regarding which cloud resources need to be provisioned visit our read the docs (RTD) guide for this plugin.
The required AWS resources include a Batch Job Definition, Batch Job Role, Batch Queue, Batch Compute Environment, Log Group, Subnet, VPC, and an S3 Bucket.
Getting Started with Covalent
For more information on how to get started with Covalent, check out the project homepage and the official documentation.
Release Notes
Release notes for this plugin are available in the Changelog.
Citation
Please use the following citation in any publications:
W. J. Cunningham, S. K. Radha, F. Hasan, J. Kanem, S. W. Neagle, and S. Sanand. Covalent. Zenodo, 2022. https://doi.org/10.5281/zenodo.5903364
License
Covalent is licensed under the Apache License 2.0. See the LICENSE file or contact the support team for more details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file covalent-awsbatch-plugin-0.42.0.tar.gz
.
File metadata
- Download URL: covalent-awsbatch-plugin-0.42.0.tar.gz
- Upload date:
- Size: 20.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a309078677964956634cd12c7de8c54ffc81806a914e56fe05924b93a5d8b1c7 |
|
MD5 | 2ea79e2c25df1bd52bff9a7c870291e9 |
|
BLAKE2b-256 | ef3247da743c51d9ba3c106078a035fd79cb1e617e9a4cdfea75c593f9c70fdb |