Skip to main content

Contemporary Persian word analyzer

Project description

Contemporary Persian Inflectional Analyzer

PyPI version calver YYYY.MM.DD

Analyze Informal and Formal words of contemporary Persian.

Install

pip install cpia

Usage

>>> from cpia import FarsiAnalyzer, Converter
>>> farsi = FarsiAnalyzer()

>>> farsi.inflect("کتاب‌هایشان")
['اسمعا=کتاب+جها+وشخصی۶+رسمی']

>>> farsi.inflect("بشینین")
['التزامی=نشین+ش۵', 'امری=نشین+ش۵']

>>> farsi.generate("امری=گو+مفرد+رسمی")
['بگو']

>>> print(farsi.generate('ف.ح.ا=خور+ش۱+ومفعولی۲')[0])
می‌‌خورمت

>>> farsi.lemmatize(farsi.inflect("میچرخوندمش")[0])
{'lemma': 'چرخوند',
 'pos': 'ف.م.ا',
 'register': 'غیررسمی',
 'long_pos': 'فعل ماضی استمراری'}

>>> converter = Converter(farsi)
>>> print(converter.convert("میچرخوندمش", "formal")[0])
میچرخاندم

For understanding abbreviations used in inflection rules:

>>> farsi.show_help()
🔹  ف.م.ب 👈 فعل ماضی بعید*
🔹  ف.م.ال 👈 فعل ماضی التزامی*
🔹  ف.م.ا.ب 👈 فعل ماضی ابعد*
🔹  ف.آ 👈 فعل مستقبل (آینده)*
🔹  اسمعام 👈 اسم عام
          ...

Other than standard fst for inflection and generation fst for generating words from rules, cpia has secondary fsts. The main fst is enough for almost all tasks but the secondary fsts can be used for noisy informal Out-Of-Vocabulary words, they normally can produce a lot of useless inflections. They are only useful for special cases. Use them only if you know what you want. If you need to use other fsts, just pass their name as argument to the FarsiAnalyzer constructor:

>>> farsi = FarsiAnalyzer("homophone")

Fsts

Name word output
standard برم <اسمعام=بره+وشخصی۱>
<اسمعام=بر+هم>
<اسمعام=بر+وشخصی۱+رسمی>
<اسمعام=بر+وربطی۱+رسمی>
<اسمعام=برم+رسمی>
<حضاف=بر+وشخصی۱+رسمی>
<التزامی=ر+ش۱>
<امری=رم+مفرد+رسمی>

Secondary Fsts

Name word output
homophone مسؤول
مسئول
مسیول
<اسمعام=مسئول+رسمی>
phone_change (avaee) شیطون <اسمعام=شیطان>
expressive چرااااااا <اسمعام=چرا+رسمی>
splitter چهاربعدی <شماره=چهار+رسمی>
<صفت=بعدی+رسمی>

تحلیلگر تصریفی فارسی معاصر

Evaluation

The analyzer is not aware of context but the output should provide all possible inflections for all possible contexts. Eval dataset is in eval folder. For 1786 unique words extracted from dataset analyzer produced 3,704 inflections rules. Here are the shortcomings counted based on their occurances.

register OOV OO-Rules homophone / Ezafeh Const. stucking words phone changing spelling error
informal 40 4 3 3 5 8
formal 83 6 0 1 0 17

The recall metric is calculated for all FSTs as below

register / FST standard homophone phone_change expressive splitter
informal 96.33% 96.42% 97.3% 97.3% 97.48%
formal 95.1% 95.1% 95.1% 95.1% 95.1%
combined (Contemporary) 95.56% 95.64% 96% 96% 96.08%

OOVs and OO-Rules

There is a list of words and inflections in OOs/extra.txt that are not included in Fsts. You can directly contribute to this list. This list will be used to update Fsts in a proper manner periodically. For contributing directly to this list, please use the following format, and for inflection, use the structure of this analyzer. Note that the third column (the context that the word appears in) is optional.

فونت[TAB]اسمعام=فونت+رسمی[TAB]فونت قشنگی استفاده کردن

Persian word structure; informal and formal

Comprehensive structure of words especially informal words are explained in the Contemporary Persian Inflectional Analyzer paper in full detail: docs/informal-analyzer.pdf; or from the Journal website

Citation

@article{Heidarpour2021, 
  title = {Contemporary Persian Inflectional Analyzer}, 
  author = {Heidarpour, Davood and S.Sebt, Elham and Bi Jen Khan, Mahmoud and Salehi, Mostafa and Veisi, Hadi },  
  volume = {36}, 
  number = {4},  
  URL = {http://jipm.irandoc.ac.ir/article-1-4337-en.html},  
  eprint = {http://jipm.irandoc.ac.ir/article-1-4337-en.pdf},  
  journal = {Iranian Journal of Information Processing and Management},   
  doi = {10.52547/jipm.36.4.945},  
  year = {2021}  
}

Fst word rule structure; informal and formal

All the lexicon, morphotactic and morphophonemic rules are in lexc folder. These files are used by a tool called Foma to compile Fsts. How the rules of words are developed to make Fsts are explained in Thesis: docs/thesis.pdf

Citation

@mastersthesis{Heidarpour2018,
  title = {An inflectional analyzer for contemporary Persian},
  author = {Heidarpour, Davood and Salehi, Mostafa and Bi Jen Khan, Mahmoud and Veisi, Hadi},
  year = {2018}
} 

Secondary Fsts

These Fsts are designed for covering out-of-vocabulary informal/noisy words and are explained in Covering Out-of-Vocabulary Words of Informal Persian paper: docs/informal-oov.pdf

Citation

@incollection{Heidarpour2019, 
  title = {Covering Out-of-Vocabulary Words of Informal Persian}, 
  author = {Heidarpour, Davood and Salehi, Mostafa and Bi Jen Khan, Mahmoud and Veisi, Hadi and Ranjbar, Vahid},  
  booktitle = {5th National Conference on Computational Linguistics},
  URL = {https://neveeseh.com},  
  year = {2019}  
}

License

Licensed under GNU General Public License Version 3 (GPLv3)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cpia-2024.7.8.tar.gz (7.2 MB view details)

Uploaded Source

Built Distribution

cpia-2024.7.8-py3-none-any.whl (7.2 MB view details)

Uploaded Python 3

File details

Details for the file cpia-2024.7.8.tar.gz.

File metadata

  • Download URL: cpia-2024.7.8.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for cpia-2024.7.8.tar.gz
Algorithm Hash digest
SHA256 5259c2b8c77d8c05eadcde97a07147fc7bc357988d7377a8572487d6b221a057
MD5 10115f3442480ac7d41a10e4c9b1522c
BLAKE2b-256 03a83bacf7e5512e20c59594316992424be2008321d2950f523b89a328876d84

See more details on using hashes here.

File details

Details for the file cpia-2024.7.8-py3-none-any.whl.

File metadata

  • Download URL: cpia-2024.7.8-py3-none-any.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for cpia-2024.7.8-py3-none-any.whl
Algorithm Hash digest
SHA256 7076cf801054e657f62dfa672beeaec0e64d769ab1236425fffa76d6a63e6b16
MD5 a7efb7fddee7e16cf0465eb0a76c5396
BLAKE2b-256 142d2bf1c4adb028c6993e006455dfee8d78e501053eaadafc58ee7be6ee3af7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page