cprotobuf maintained by LeanCloud
Project description
cprotobuf maintained by LeanCloud
Add generated cprotobuf.c back into repo, for installation without Cython
Switched to setuptools
cprotobuf
A minimal fast protobuf implementation with cython. Benchmark shows that it’s much faster than google official expremental cpp-python implementation.
I’ve been using it in production since 2013, only tested with python2.7, feedback on other python release is welcome.
Benchmark
$ ./setup.py build_ext --inplace
$ cd benchmark
$ ./bench.sh
encode[google official pure python]:
10 loops, best of 3: 68.8 msec per loop
encode[google official cpp python]:
100 loops, best of 3: 19.4 msec per loop
encode[py-protobuf][cprotobuf]:
100 loops, best of 3: 3.58 msec per loop
decode[google official pure python]:
10 loops, best of 3: 47.5 msec per loop
decode[google official cpp python]:
100 loops, best of 3: 4.55 msec per loop
decode[py-protobuf][cprotobuf]:
100 loops, best of 3: 3.98 msec per loop
Tutorial
Use plugin
You write a person.proto file like this:
package foo;
message Person {
required int32 id = 1;
required string name = 2;
optional string email = 3;
}
And a people.proto file like this:
package foo;
import "person.proto";
message People {
repeated Person people = 1;
}
Then you compile it with provided plugin:
$ protoc --cprotobuf_out=. person.proto people.proto
If you have trouble to run a protobuf plugin like on windows, you can directly run protoc-gen-cprotobuf like this:
$ protoc -ofoo.pb person.proto people.proto
$ protoc-gen-cprotobuf foo.pb -d .
Then you get a python module foo_pb.py , cprotobuf generate a python module for each package rather than each protocol file.
The generated code is quite readable:
# coding: utf-8
from cprotobuf import ProtoEntity, Field
# file: person.proto
class Person(ProtoEntity):
id = Field('int32', 1)
name = Field('string', 2)
email = Field('string', 3, required=False)
# file: people.proto
class People(ProtoEntity):
people = Field(Person, 1, repeated=True)
Actually, if you only use python, you can write this python module, avoid code generation.
The API
Now, you have this lovely python module, how to parse and serialize messages?
When design this package, We try to minimise the effort of migration, so we keep the names of api akin to protocol buffer’s.
encode/decode
>>> from foo_pb import Person, People
>>> msg = People()
>>> msg.people.add(
... id = 1,
... name = 'jim',
... email = 'jim@gmail.com',
... )
>>> s = msg.SerializeToString()
>>> msg2 = People()
>>> msg2.ParseFromString(s)
>>> len(msg2)
1
>>> msg2.people[0].name
'jim'
reflection
>>> from foo_pb import Person, People
>>> dir(Person._fields[0])
['__class__', '__delattr__', '__doc__', '__format__', '__get__', '__getattribute__', '__hash__', '__init__', '__new__', '__pyx_vtable__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'index', 'name', 'packed', 'repeated', 'required', 'wire_type']
>>> Person._fields[0].name
'email'
>>> Person._fieldsmap
{1: <cprotobuf.Field object at 0xb74a538c>, 2: <cprotobuf.Field object at 0xb74a541c>, 3: <cprotobuf.Field object at 0xb74a5c8c>}
>>> Person._fieldsmap_by_name
{'email': <cprotobuf.Field object at 0xb74a5c8c>, 'name': <cprotobuf.Field object at 0xb74a541c>, 'id': <cprotobuf.Field object at 0xb74a538c>}
repeated container
We use RepeatedContainer to represent repeated field, RepeatedContainer is inherited from list, so you can manipulate it like a list, or with apis like google’s implementation.
>>> from foo_pb import Person, People
>>> msg = People()
>>> msg.people.add(
... id = 1,
... name = 'jim',
... email = 'jim@gmail.com',
... )
>>> p = msg.people.add()
>>> p.id = 2
>>> p.name = 'jake'
>>> p.email = 'jake@gmail.com'
>>> p2 = Person(id=3, name='lucy', email='lucy@gmail.com')
>>> msg.people.append(p2)
>>> msg.people.append({
... 'id' : 4,
... 'name' : 'lily',
... 'email' : 'lily@gmail.com',
... })
encode raw data fast
If you already have your messages represented as list and dict, you can encode it without constructing intermidiate objects, getting ride of a lot of overhead:
>>> from cprotobuf import encode_data
>>> from foo_pb import Person, People
>>> s = encode_data(People, [
... { 'id': 1, 'name': 'tom', 'email': 'tom@gmail.com' }
... ])
>>> msg = People()
>>> msg.ParseFromString(s)
>>> msg.people[0].name
'tom'
Run Tests
$ nosetests
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cprotobuf-lc-0.1.5.tar.gz
.
File metadata
- Download URL: cprotobuf-lc-0.1.5.tar.gz
- Upload date:
- Size: 97.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ffb60be89243c5debe53f1d4f64e8058080d68c62c924238bf7b49edf892c26 |
|
MD5 | c42dfe62f3b2fed32b23fc307d00e79c |
|
BLAKE2b-256 | 242a8fde3e954f75090fe663110b83c10bfbc574d25d6bbd2c29bccc67ddf411 |
File details
Details for the file cprotobuf_lc-0.1.5-cp27-cp27m-macosx_10_12_intel.whl
.
File metadata
- Download URL: cprotobuf_lc-0.1.5-cp27-cp27m-macosx_10_12_intel.whl
- Upload date:
- Size: 135.3 kB
- Tags: CPython 2.7m, macOS 10.12+ intel
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3e32ae3326cbb1590047b644b0c2aed1efdd37e7bcd5fb9a933fab3da87cfaf4 |
|
MD5 | a601e578f71a1ee5ca7805d0eefa33c4 |
|
BLAKE2b-256 | eed1d49c8d2b028c1fd342eb696c24f9521246c849dc9240a89fa79a3e4129c9 |