Skip to main content

Compact Prediction Tree: A Lossless Model for Accurate Sequence Prediction

Project description

CPT

Downloads License

What is it ?

This project is a cython open-source implementation of the Compact Prediction Tree algorithm using multithreading.

CPT is a sequence prediction model. It is a highly explainable model specialized in predicting the next element of a sequence over a finite alphabet.

This implementation is based on the following research papers:

Installation

You can simply use pip install cpt.

Simple example

You can test the model with the following code:

from cpt.cpt import Cpt
model = Cpt()

model.fit([['hello', 'world'],
           ['hello', 'this', 'is', 'me'],
           ['hello', 'me']
          ])

model.predict([['hello'], ['hello', 'this']])
# Output: ['me', 'is']

For an example with the compatibility with sklearn, you should check the documentation.

Features

Train

The model can be trained with the fit method.

If needed the model can be retrained with the same method. It adds new sequences to the model and do not remove the old ones.

Multithreading

The predictions are launched by default with multithreading with OpenMP.

The predictions can also be launched in a single thread with the option multithread=False in the predict method.

You can control the number of threads by setting the following environment variable OMP_NUM_THREADS.

Pickling

You can pickle the model to save it, and load it later via pickle library.

from cpt.cpt import Cpt
import pickle


model = Cpt()
model.fit([['hello', 'world']])

dumped = pickle.dumps(model)

unpickled_model = pickle.loads(dumped)

print(model == unpickled_model)

Explainability

The CPT class has several methods to explain the predictions.

You can see which elements are considered as noise (with a low presence in sequences) with model.compute_noisy_items(noise_ratio).

You can retrieve trained sequences with model.retrieve_sequence(id).

You can find similar sequences with find_similar_sequences(sequence).

You can not yet retrieve automatically all similar sequences with the noise reduction technique.

Tuning

CPT has 3 meta parameters that need to be tuned. You can check how to tune them in the documentation. To tune you can use the model_selection module from sklearn, you can find an example here on how to.

Benchmark

The benchmark has been made on the FIFA dataset, the data can be found on the SPMF website.

Using multithreading, CPT was able to perform around 5000 predictions per second.

Without multithreading, CPT predicted around 1650 sequences per second.

Details on the benchmark can be found here.

Further reading

A study has been made on how to reduce dataset size, and so training / testing time using PageRank on the dataset.

The study has been published in IJIKM review here. An overall performance improvement of 10-40% has been observed with this technique on the prediction time without any accuracy loss.

One of the co-author of CPT has also published an algorithm subseq for sequence prediction. An implementation can be found here

Support

If you enjoy the project and wish to support me, a buymeacoffee link is available.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cpt-1.3.4.tar.gz (175.3 kB view details)

Uploaded Source

Built Distributions

cpt-1.3.4-cp312-cp312-win_amd64.whl (107.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

cpt-1.3.4-cp312-cp312-win32.whl (93.8 kB view details)

Uploaded CPython 3.12 Windows x86

cpt-1.3.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

cpt-1.3.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

cpt-1.3.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

cpt-1.3.4-cp312-cp312-macosx_10_9_x86_64.whl (402.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

cpt-1.3.4-cp311-cp311-win_amd64.whl (107.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

cpt-1.3.4-cp311-cp311-win32.whl (93.2 kB view details)

Uploaded CPython 3.11 Windows x86

cpt-1.3.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

cpt-1.3.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

cpt-1.3.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

cpt-1.3.4-cp311-cp311-macosx_10_9_x86_64.whl (401.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

cpt-1.3.4-cp310-cp310-win_amd64.whl (106.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

cpt-1.3.4-cp310-cp310-win32.whl (94.2 kB view details)

Uploaded CPython 3.10 Windows x86

cpt-1.3.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

cpt-1.3.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

cpt-1.3.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

cpt-1.3.4-cp310-cp310-macosx_10_9_x86_64.whl (400.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

cpt-1.3.4-cp39-cp39-win_amd64.whl (107.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

cpt-1.3.4-cp39-cp39-win32.whl (95.0 kB view details)

Uploaded CPython 3.9 Windows x86

cpt-1.3.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

cpt-1.3.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

cpt-1.3.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

cpt-1.3.4-cp39-cp39-macosx_10_9_x86_64.whl (401.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

cpt-1.3.4-cp38-cp38-win_amd64.whl (109.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

cpt-1.3.4-cp38-cp38-win32.whl (92.8 kB view details)

Uploaded CPython 3.8 Windows x86

cpt-1.3.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

cpt-1.3.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

cpt-1.3.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

cpt-1.3.4-cp38-cp38-macosx_10_9_x86_64.whl (402.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file cpt-1.3.4.tar.gz.

File metadata

  • Download URL: cpt-1.3.4.tar.gz
  • Upload date:
  • Size: 175.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for cpt-1.3.4.tar.gz
Algorithm Hash digest
SHA256 26c774dcd4605a6e09d40de885afa8595067b48e8c0d3ebfee9631c3c79f0452
MD5 f584e1c423d6c42b40fc5932166ff85a
BLAKE2b-256 ead871c73df9093ffcaef7fd219d1d527dfc3b08dcdad4f8f1826c9a8619ced4

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 107.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for cpt-1.3.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3183e3991a25bc5c4fea0a00024e4a658608dd1f59793d72c9d0477852e046ab
MD5 6fd581c829d8f89f6a5f147e42c9fab5
BLAKE2b-256 8656755c8655e9e2fda9ba7b97ed5ab1cb713d621a3c0bdcb0b759fb0e53bc33

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp312-cp312-win32.whl.

File metadata

  • Download URL: cpt-1.3.4-cp312-cp312-win32.whl
  • Upload date:
  • Size: 93.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for cpt-1.3.4-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 68f01dd04d4a52fdddf6be6614fcaa45eb6e4edc3979db3e25f344d55977c5c9
MD5 6ee74e77482defa85eac80690a640a81
BLAKE2b-256 ae0c68b50a414dd168a4738e25a4dcb4abeb4a6fff1423a2062b8b39bbbd0bbb

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a9fa6667b50c7b639112ef61b2bef625e3957bae95cde6053118c5bd2f53894
MD5 eb48947dafedddd4e8527b6d14e5c743
BLAKE2b-256 d56501a9d8a5234f705cfdb9d06e7c863bbe0981565c29a04e137f3cf7f86198

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4cf4a8e0b06f8a0a1a185e679a7eaf8b5a4740185da3a8ec55f190717ba8502e
MD5 642141d128bbe3bf69e4ab89c0a3cb36
BLAKE2b-256 6998a8345b5ae8049e02682540b4e9fa72059196e1fd7d943f35f6afda7702e1

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b28fe19bd24ee42b07093c3dfd234911c6134e45dfbcddc17b161d3af70abd12
MD5 cf199b4b4faf517f8bf6b2907d53e045
BLAKE2b-256 fd59d467d67522bce0024cb3455e7ea3c277bf03093a38c3d67c1e7686764d7d

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c6f74293ba130e42cebf9433d15322ed6aac3aca091ef7a3628bced615ab8358
MD5 0010f4365bb513788c5ec27d6bb1553b
BLAKE2b-256 92360276dfed23f6a9b50d907afa28ada9d97e36fc6808df8d56d43310baa30e

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 107.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for cpt-1.3.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 61bba5311f82b39b02677f8469c51b40efb3cfb33f2ad97c8eda7c50a8a66e79
MD5 7ad5628349a8816cbcd82a2368002fcd
BLAKE2b-256 d6023a11652166c107380826ef6feefb62e74066740cac1c13984daee05265d5

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: cpt-1.3.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 93.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for cpt-1.3.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 82d8b21a615cf78d151a614ff308258fff65eb1b6733ab76b8991f6ad4121e1a
MD5 d7dcec64c1a1e29c949556a2448c0e1e
BLAKE2b-256 79b42f788c893f5059eae255e8091d325b6035b9d291e0446fa60ba6ae52f19e

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b15bd534eb2c9c3b75289ef0013bfcdc7c72d7930e328a7b7f75c02ff91d936
MD5 e636869c7a714bcd2745450165fa8586
BLAKE2b-256 a7023a9c2061fd2f632832bb7160467519387114a2f4b537452cda77cc294e28

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 69923347ed83b37fd09890836f74debcd32aee0ad3efcbaf31ac59f95fe61fb3
MD5 26f7b92b5720f3da2ef52fb5e07e8371
BLAKE2b-256 7bb94064765961e64d7137ff2781f4f7ea07019e3e12ebcdee5e57594bb12ac1

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b51b5dfffc65eb21f84ccb1826ed6ee03869b2801e24ecedc34c11f5c9a7f123
MD5 806d8df15f684cb1d33bbed36e4d8a3b
BLAKE2b-256 bbcb3207f8698cf18cb9a3027aef6402762e4ac3ced5990635be2ddbfc2abb48

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab14718208e45f6e7c59d893a6e41b80d0fd29eef202787f7f8a025a2ecd8baa
MD5 3090c08fc3a7f093f77d0a770b87b822
BLAKE2b-256 911f392e519f24fa4ea43d008becaabf5820fc97fc38eb5652afd741d3456e67

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 106.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for cpt-1.3.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7a14ca86c4457b8ba278814dba9c8f6c84cd0483347683c56dde9e2ed8c36304
MD5 cbeeb4d16299f469658980551054165e
BLAKE2b-256 d001c8d99c739c636b1ca610d98ffa6a288ce3a04e7e0dbd2a84b37e7c7c3cb7

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: cpt-1.3.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 94.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for cpt-1.3.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 905c0a019b0dcb6a9f7269c31ab81adbe67259b4856d37ad61cceb32fb636563
MD5 59749a490b4ea4dd2b11f23d1e9e3445
BLAKE2b-256 039f1612e90d13a578f5afaac3dcdece21f67a014282c5f0e88dde135786de23

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98e5717ea2ed96a360b82c19cdcefd7f17afc4816072c7f2ef0f0358172a80da
MD5 015308f9bc5435bf062673418d60a3a1
BLAKE2b-256 8a5dedb2e6c3a2ec9e5bf8df16929b45d643d926b2a137708d90be44b2d1e1c0

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 145df342309edc6072a3f3f9df401d2bb3eca651227c341f407a9412af841b5e
MD5 3674e40bc6ea1846e4e5be3cba7d137c
BLAKE2b-256 00a5844ed0508ca7d22064fa03d01d2592aa8861097df1d9f7ff47fe8d96daf9

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f7e179e7ca20dbc87a5e311ebdd3f239f490473e390e8f52b559df0765f02f79
MD5 8b738f091cd70d2bf99880bfe0057aae
BLAKE2b-256 442e9c86c00680b7c7b3d5af7481636ff8b96e36b32d11d1ec25632ed9a25ffe

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7bba8cf5fecdd3eb210d5d7f953651d5c0039f23c0e2460ee3c130dd3b278975
MD5 01e1c14f0fbe49ba78e1fcfdc4100f2e
BLAKE2b-256 2d44fa9ce830fcb4c0836251afe616ef7a6c29bded671d6d22fc49b709dbd0dc

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 107.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for cpt-1.3.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 407e48a256ccc69b6aff08223765b8f408f0f71c7f54622ec393de9880818d98
MD5 4733448d60331a37ccd2caf6e90ad3ec
BLAKE2b-256 bd292fa21c58f53055a33e493c8d9af976a30b19c49c4b434bf04232420b4d6d

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: cpt-1.3.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 95.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for cpt-1.3.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3a7b09fba4343f58046aec7fe465878cc5088d687f1b60bbef2017370635b16f
MD5 1b36c2403db9c0a4ec1eb0bcfbc118e0
BLAKE2b-256 b2727a12a86b42d31c7664658d75c8610993316fa87ce7aeb4acd4306fb9daf5

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8fef858c4b4a37e3e7e28a32e1219146fae239a2e6a474a6e9317cc3f983915
MD5 c437901d4ffe740fb78e1db0530dc8d1
BLAKE2b-256 79e70588c951c64e436be79b8c9cdbe25028dac7be3eae712b5c104b2484e5f7

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 be312e50712dbda43174b283cf9f285ac489a186f3fea9655d5a9b21295e7176
MD5 5fbd8fd601be71d222e06706c410e899
BLAKE2b-256 5bf3c2093dc8d35d4efdfb730481083c40bf237d6679a0fb7c98527fdedfa1d3

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5ca4e538a6ddcb1fbb1d28a400d145e581f9bf039ad74bf0696f2d5a03d6e743
MD5 d3d874eadc5ae38aac0542d0307f01e6
BLAKE2b-256 f0c5588abf01d5c1fb7b6ead2eaa50b1b443b21df177f1f3c696dd694ca1508f

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6e8deb0530090931a5de042a1bb4b2ae6ba977a1fb8840fa92747772db06c19d
MD5 f736141b4f1c101e724ff137c88dc90e
BLAKE2b-256 ed55253a5864d044c3b2052351ecfb7a16584c8153aa57e4e6fc1ee762db23e9

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 109.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for cpt-1.3.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 88c65c9be51b604706e4155ba39346e94824b0f560c6bd0bf888f3a57d584346
MD5 2250f3ab6633c486235b60146c1a2dd6
BLAKE2b-256 f0c938849473e190d22d4b735964786e50a8b374e04ac8d0c348f552ca550e64

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: cpt-1.3.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 92.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for cpt-1.3.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4a8842b556c18459e254040ed49168819b32c146bb40a61b26f741e892370bec
MD5 4ef297fe392af0ca7c18b1dfc4439e09
BLAKE2b-256 3cfd8654c1ffb3b326029a304364052d22bc21eca84538e3b58ce3a2c1920a86

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf7034ba703f3d334d93afa2944ca941fc40a968e1bbb8feaacc02adebc88e51
MD5 21ac9498eb67d6b881bd40979e3c4cdc
BLAKE2b-256 82cacc93459c27c6c99d8eef2db6ed0b6fb39eabe900c110dfb6b4545d65e9cd

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 26e05574fdf0d7169e829c90681107bf54cdffcee2097190c5c2a293f33d2c1f
MD5 6058332b610634ba0ecfbc449409da68
BLAKE2b-256 a3ee16ddace31b4200d50ad7f4f77fc51f7533015ecf18bf100de594d3a97665

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 667538339d040cecdd76906be94b68de75354506002d285a987096ae6e69f1ff
MD5 f3ade33dc6c8c4b60ec819566830b70f
BLAKE2b-256 78b042792ac05e15e9ced39960e7231d80ae0e051ac57af7c9fa492dc334eaef

See more details on using hashes here.

File details

Details for the file cpt-1.3.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c53ebaff301fb0b8cc7f5854bc552a7d76c4ce56ac661dd8cfc4fc437d22251c
MD5 40e5c9c5b137cd7d350c273c51ac6ba1
BLAKE2b-256 7b587af71d3964ae095ffa9f25e085e29052cef0edfd8064a2086aab218c3450

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page