Skip to main content

Compact Prediction Tree: A Lossless Model for Accurate Sequence Prediction

Project description

CPT

Downloads License

What is it ?

This project is a cython open-source implementation of the Compact Prediction Tree algorithm using multithreading.

CPT is a sequence prediction model. It is a highly explainable model specialized in predicting the next element of a sequence over a finite alphabet.

This implementation is based on the following research papers:

Installation

You can simply use pip install cpt.

Simple example

You can test the model with the following code:

from cpt.cpt import Cpt
model = Cpt()

model.fit([['hello', 'world'],
           ['hello', 'this', 'is', 'me'],
           ['hello', 'me']
          ])

model.predict([['hello'], ['hello', 'this']])
# Output: ['me', 'is']

For an example with the compatibility with sklearn, you should check the documentation.

Features

Train

The model can be trained with the fit method.

If needed the model can be retrained with the same method. It adds new sequences to the model and do not remove the old ones.

Multithreading

The predictions are launched by default with multithreading with OpenMP.

The predictions can also be launched in a single thread with the option multithread=False in the predict method.

You can control the number of threads by setting the following environment variable OMP_NUM_THREADS.

Pickling

You can pickle the model to save it, and load it later via pickle library.

from cpt.cpt import Cpt
import pickle


model = Cpt()
model.fit([['hello', 'world']])

dumped = pickle.dumps(model)

unpickled_model = pickle.loads(dumped)

print(model == unpickled_model)

Explainability

The CPT class has several methods to explain the predictions.

You can see which elements are considered as noise (with a low presence in sequences) with model.compute_noisy_items(noise_ratio).

You can retrieve trained sequences with model.retrieve_sequence(id).

You can find similar sequences with find_similar_sequences(sequence).

You can not yet retrieve automatically all similar sequences with the noise reduction technique.

Tuning

CPT has 3 meta parameters that need to be tuned. You can check how to tune them in the documentation. To tune you can use the model_selection module from sklearn, you can find an example here on how to.

Benchmark

The benchmark has been made on the FIFA dataset, the data can be found on the SPMF website.

Using multithreading, CPT was able to perform around 5000 predictions per second.

Without multithreading, CPT predicted around 1650 sequences per second.

Details on the benchmark can be found here.

Further reading

A study has been made on how to reduce dataset size, and so training / testing time using PageRank on the dataset.

The study has been published in IJIKM review here. An overall performance improvement of 10-40% has been observed with this technique on the prediction time without any accuracy loss.

One of the co-author of CPT has also published an algorithm subseq for sequence prediction. An implementation can be found here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cpt-1.3.2.tar.gz (116.0 kB view details)

Uploaded Source

Built Distributions

cpt-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (938.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

cpt-1.3.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (918.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

cpt-1.3.2-cp311-cp311-macosx_11_0_arm64.whl (92.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

cpt-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl (371.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

cpt-1.3.2-cp310-cp310-win_amd64.whl (94.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

cpt-1.3.2-cp310-cp310-win32.whl (80.8 kB view details)

Uploaded CPython 3.10 Windows x86

cpt-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (916.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

cpt-1.3.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (904.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

cpt-1.3.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (844.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

cpt-1.3.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (819.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

cpt-1.3.2-cp310-cp310-macosx_11_0_arm64.whl (95.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

cpt-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl (103.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

cpt-1.3.2-cp39-cp39-win_amd64.whl (96.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

cpt-1.3.2-cp39-cp39-win32.whl (82.3 kB view details)

Uploaded CPython 3.9 Windows x86

cpt-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (925.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

cpt-1.3.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (916.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

cpt-1.3.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (859.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

cpt-1.3.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (829.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

cpt-1.3.2-cp39-cp39-macosx_11_0_arm64.whl (94.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

cpt-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl (103.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

cpt-1.3.2-cp38-cp38-win_amd64.whl (94.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

cpt-1.3.2-cp38-cp38-win32.whl (78.0 kB view details)

Uploaded CPython 3.8 Windows x86

cpt-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (929.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

cpt-1.3.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (919.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

cpt-1.3.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (875.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

cpt-1.3.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (848.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

cpt-1.3.2-cp38-cp38-macosx_11_0_arm64.whl (94.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

cpt-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl (103.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file cpt-1.3.2.tar.gz.

File metadata

  • Download URL: cpt-1.3.2.tar.gz
  • Upload date:
  • Size: 116.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for cpt-1.3.2.tar.gz
Algorithm Hash digest
SHA256 f0f7fb61c16f68bfc24b38a8c7e4d88bcbf0b9bf32c0d53c17a688c9902d1adb
MD5 ec382e2103505d497719e566e8f8eee0
BLAKE2b-256 85a28d53b9238e597235d7172ea635744cb09c28ae48282d038dd3c6b837fbee

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de11aa20b0934abea6a7d20bd0e123e77e8c1b18d20ab675abf6bd9ac5d37a09
MD5 64169c227b41ef13fdecabaf7e0556e1
BLAKE2b-256 1033eae1f4c9e5992047ed2c11e0669fa1b4a548e8eb2225dcea2af07a7c3c58

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7323387b8e1c3f88dd65c96e50445d05f16683855553e328076d8c02fb1a1252
MD5 3964985382338b1d53457124b61cc559
BLAKE2b-256 a0a2f2e5935e8ad5b43a11da0a8387d26d04165cf928566c85ce9efdf3303f83

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa69348d43feb2b6fe311b76554f63ad71bfc2e2791748157ef4aa3e0d9e19cf
MD5 1312e5ac15fa1ed3601b6c6d0a85e3f8
BLAKE2b-256 4a124608261becaa2e455ac53fc0dfa84a190f36428e482ac6dff9bdf0753767

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f835ca06e1502db4736d6231b564c271cfd58ae23b772bf4947bb1d07ac691a6
MD5 f2e8190a87baad5dc97330b25647d50c
BLAKE2b-256 d17c135f9ea70dfd3009145b223820f8cc62f9f29a6de396f5d9966e4bb704c6

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 94.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for cpt-1.3.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 913aa03051070beb672c95407c77d3c435265252b244a0d6c47f32d0ea7b2ea3
MD5 8e0ab4477bbeb6100a677660759d8342
BLAKE2b-256 79ec82bd581c61bf7aa297aec0a5b601fda555d4d191456ddbd22f1708d64a5f

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: cpt-1.3.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 80.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for cpt-1.3.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 8456d6d4bfaaec3bd3cc1730b9b2df96a3c7886a0f667660e678bcf952c63bb4
MD5 db094734b4633f2b00adf15555035d5c
BLAKE2b-256 69e7173ce2447652dc776534fd9dbc6d42c578ef941b936fea5a871f706da2db

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af938aa40371f96eae69dbe9cf1060fe5fc712b7d0fcf0ee1077fe023a581764
MD5 23ceb76d2534e56578fe4a39453b66b6
BLAKE2b-256 4b141b0ea4b37f7bebc4650960cb6c699e6e21f52e63fe2e4005d3381d8ca026

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b80241da096da7d09f054a14108c5c9264b67694fc28f2cf490f990d0098aa7a
MD5 68cf714eb7042d60810f77a2f38f37f4
BLAKE2b-256 dd2b70be543f71a581a458d39999b9d97f352d1f45962a41f1019c7be07f990d

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6d9cb00e6b9bc822bfd9f0b5e4e180611eaadff61509edc40cb75b7f2db2b7b5
MD5 d1c949eb6f7c11efac986cb3ffd17489
BLAKE2b-256 8438afd7f022981ff3c5b8792accbc166fa7eb572c90e56e097bad5e884eaeb2

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 aaa63823d707fdb7bde42673d0d997bee390db55fdbc059becb2c9a9ba83cfb7
MD5 780fd9ed5a6a1e6c5d117f887ae123ab
BLAKE2b-256 8843f34c05fc033dcd31bfcacde3dc90c237f5f8fb9a92773ee45fca17d6b084

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7e9a655c6a5c84827c0377be2f38fde270327660809e67ab45aaac1d103a1770
MD5 264adf9192101deb3d565477813c1f24
BLAKE2b-256 a753e398b6f38122942a037effe1026d57573b0ac3ec8a48c2e4781b81d8ead0

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14b0233031f9c57d952e99e2d1371aa3e6208f0b4dc56b9498a78966b4d0268a
MD5 68c111537306925c9da269368b98c78b
BLAKE2b-256 7fbe68a261b479372a5fcfd71d83251ed2f5f32eee66fb45e870bcd14aca7c56

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 96.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for cpt-1.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d451eee4e02d8ba8bd28a86155d67404249bf70110668eaef601cf2c32f2da82
MD5 c201489362da2b122fcfeca620a1058f
BLAKE2b-256 dd175294766c3518b39abdf43a8e466c791534db404453941eb99a72ad9fbce6

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: cpt-1.3.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for cpt-1.3.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 88a13d3b0d399fed7aa8b481854024d7a0eafd23c322af677bd043a8e90627aa
MD5 d9b8248ea2927aeb3dc672419150c42c
BLAKE2b-256 9b313a9a0da62759b9fd44c0876f8127ac7b0b0118392c50035eb26efed96cc1

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e5edb77bb4994defd264b0c3f82ea4411cd2049e4a4d84aa391eda42cf68adb
MD5 bfb84ba283cf91e2bdb627b719abcd42
BLAKE2b-256 0c43c97bdc8c4729439ffa4f29f95999948585de2ea6b6a196d2b068d3983d63

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d4087478c0eaf46a3ef0e225e9d78a8f7ab8bc82d3ffff89cfc7cba5cd0fd547
MD5 c3fabe4f136448e1d1a07b817dc58c6f
BLAKE2b-256 cd23cbbcb008e640e52f299cd34aed7800d4db769962020cecf0aa1d18f58f77

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d843a797e37a5f22fc9ea7e25a3c5215152ed8c2f0a064b6a1d5052ce4097bd6
MD5 63baee07c7c0fae7836bfde633490aeb
BLAKE2b-256 21e714a7cbe6a08c124873949bb095683dbeec947389b7fdb3eb8c339bca9a0f

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d34d090269e83b64f3f3d8897750eb5997ce5d7286b549a408b3c7ae71d6b73f
MD5 8f262be52f42ea314936d87bcf05d022
BLAKE2b-256 a6e604fda1b4b58d038da94a5b5a48040d854da2eb0313d190ffb693ef078292

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5706e002b8b066249c6a28ac3b4be745dbe1e740e630e1d35506de83aebd4d29
MD5 1d28c6629f973d92ed3994b26a272d8c
BLAKE2b-256 f42acc69a5212bff799ad1d5d6728f2dec64ee5cdb7fc2ae605ad5921e028fa8

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6ce09609894078e6da75dd939f6127e2a924054c371296abd787f6812e9d6b49
MD5 ab58bfc82f3803dd3d24a7cdff42cc07
BLAKE2b-256 e44ac4a8b0c126c3764b2b6e7b680f3c53dda60a17036e79619e99cab02ede50

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 94.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.0

File hashes

Hashes for cpt-1.3.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f1b291a36d0dbcd4279d657449175d5abcfc9038ef042a63323ddc7c980e6a9c
MD5 5d37fb979cf4f09dc3524877a14bfa4c
BLAKE2b-256 7188bd7e215e24441582767056c1bd489a7585b58a2dfe0f675d29b0d1f99a6e

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: cpt-1.3.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 78.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.0

File hashes

Hashes for cpt-1.3.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 42d5c58703955b448a95574145c31f48001344c7233f8f54085913582e0a51c7
MD5 cbbc593efa3cbcc0cbe8b63a500bb41d
BLAKE2b-256 0f32da969c297fbe2a9aedd070e0a80445d62272c907e503bf3186ddce0d034a

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bca6d4beea426e0905db059fffcf53929b12598347e34b17e9c858b884dbb9ee
MD5 0d7e1c1df5f57230f9b6b29edaf49621
BLAKE2b-256 5a50ba2dde8bd06d5b22c030bdccb445009d5a1dde0b478556544e3a2238af70

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3558a23f112ea126edd9ffc740a33f3b2fef73cbac80012c6305d2eca8c6fb8f
MD5 270e4e8d2a4fa7e1cded94dfffcb7ccf
BLAKE2b-256 d85b99f215a92d118b805decb35e283d225b7545fc2d9fe48e47f2d1f39696a2

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 eaf5100e931bdb806ecda95d3879205a71199487630f56b6e3a892707ebb5c34
MD5 b26169c5329ab244f3bbbd8bafc2bf0c
BLAKE2b-256 fe01a6f500b06120d196ef38414aaeeb34d9bf57a5074118e7067da88c47a54e

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ac50a0265ac1a74d54869c2bd5e065f056ef45fdfa4f240061d04448f54701cc
MD5 1f6054f4952036f210580ff21e466d48
BLAKE2b-256 15af04935ea2bb3b026d6755ae2ca9c6c7506368e2966062c5f899b0c4907cb6

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2120c2236789ec6bc36d68e5dd11881ccbec8cc3626a15385c32d7945483bf66
MD5 ea73e649363ba49f186ffecfd379f11e
BLAKE2b-256 8061f7816768d805c5b49a0ecd98c23dc2d41810a7c71ccc8692b67aa9e9528d

See more details on using hashes here.

File details

Details for the file cpt-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9ee71fc7376aa42c1aacadbb85352d20732339abdca3ed185a0f605a159dd16b
MD5 9200526c51150b9165b3b7bbe91f3089
BLAKE2b-256 e3f96c175bb50bc38462aff9f26a9295dbdab86fbb071a864457171ce352feb7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page