Skip to main content

Weighted version of crepes: Conformal classifiers, regressors, and predictive systems (crepes)

Project description

crepes-weighted

crepes-weighted is an extension of crepes, a Python package that implements conformal classifiers, regressors, and predictive systems on top of any standard classifier and regressor. crepes-weighted extends crepes by adding support for weighted conformal prediction and predictive systems, in the future this could potentially be merged into the main crepes package.

🛠️ Installation

command
pip pip install crepes-weighted

:rocket: Quick Start

First we create a synthetic dataset using the data-generating process described in Kang and Schafer (2007). This function generates a dataset with 4 features and a target variable. The target variable is generated using the following formula:

import numpy as np

def synthetic_kang_schafer_2007(n=2000, weights=None):
    if weights is None:
        weights = np.ones(n)/n
    x1 = np.random.normal(size=n)
    x2 = np.random.normal(size=n)
    x3 = np.random.normal(size=n)
    x4 = np.random.normal(size=n)

    y = 210 + 27.4*x1 + 13.7*x2 + 13.7*x3 + 13.7*x4 + np.random.normal(size=n)

    return np.stack([x1, x2, x3, x4], axis=1), y

Next, we first split it into a training and a test set using train_test_split from sklearn, and then further split the training set into a proper training set and a calibration set.

from sklearn.model_selection import train_test_split

X, y = synthetic_kang_schafer_2007()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)
X_train, X_cal, y_train, y_cal = train_test_split(X_train, y_train, test_size=0.5)

We now emulate a covariate shift by creating a new dataset with a different distribution, and we calculate the likelihood of each observation under this new distribution.

shift_weights = np.array([-1, 0.5, -0.25, -0.1])
shifted_likelihood_test = np.exp(X_test @ shift_weights)
shifted_weights_test = shifted_likelihood_test / np.sum(shifted_likelihood_test)
shifted_likelihood_cal =  np.exp(X_cal @ shift_weights)

def weighted_sample(weights, frac=0.5):
    return np.random.choice(range(len(weights)), size=int(len(weights) * frac), p=weights)

idx_no_shift = weighted_sample(np.ones(len(shifted_weights_test))/len(shifted_weights_test), frac=0.25)
idx_shift = weighted_sample(shifted_weights_test, frac=0.25)

We now "wrap" a random forest regressor, fit it to the proper training set, and fit a weighted conformal classifier through the calibrate method, using the calibration set and a set of weights to account for the covariate shift.

from sklearn.ensemble import RandomForestRegressor
from crepes_weighted import WrapRegressor

rf_wcps = WrapRegressor(RandomForestRegressor(n_estimators=100, random_state=17))
rf_wcps.fit(X_train_prop, y_train_prop)

rf_wcps.calibrate(X_cal, y_cal, likelihood_ratios=shifted_likelihood_cal, cps=True)

Finally, we can make predictions (intervals, p_values, and distributions) on the test set and calculate the coverage of the conformal predictive system.

int_wcps = rf_wcps.predict_int(X_test[idx_shift], y=y_test[idx_shift], likelihood_ratios=shifted_likelihood_test[idx_shift])
dist_wcps = rf_wcps.predict_cps(X_test[idx_shift], y=y_test[idx_shift], likelihood_ratios=shifted_likelihood_test[idx_shift], return_cpds=True)
p_values_wcps = rf_wcps.predict_cps(X_test[idx_shift], y=y_test[idx_shift], likelihood_ratios=shifted_likelihood_test[idx_shift])

Citing crepes-weighted

If you use crepes-weighted for a scientific publication, you are kindly requested to cite the following paper:

@misc{jonkers2024conformal,
      title={Conformal Predictive Systems Under Covariate Shift},
      author={Jef Jonkers and Glenn Van Wallendael and Luc Duchateau and Sofie Van Hoecke},
      year={2024},
      eprint={2404.15018},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

The preprint version of the paper can be found at https://arxiv.org/abs/2404.15018.

We also recommend citing the original crepes package:

@InProceedings{crepes,
  title = 	 {crepes: a Python Package for Generating Conformal Regressors and Predictive Systems},
  author =       {Bostr\"om, Henrik},
  booktitle = 	 {Proceedings of the Eleventh Symposium on Conformal and Probabilistic Prediction and Applications},
  year = 	 {2022},
  editor = 	 {Johansson, Ulf and Boström, Henrik and An Nguyen, Khuong and Luo, Zhiyuan and Carlsson, Lars},
  volume = 	 {179},
  series = 	 {Proceedings of Machine Learning Research},
  publisher =    {PMLR}
}

License

This project is licensed under the BSD 3-Clause License - see the LICENSE file for details.


👤 Jef Jonkers

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

crepes_weighted-0.1.0.tar.gz (25.8 kB view details)

Uploaded Source

Built Distribution

crepes_weighted-0.1.0-py3-none-any.whl (25.1 kB view details)

Uploaded Python 3

File details

Details for the file crepes_weighted-0.1.0.tar.gz.

File metadata

  • Download URL: crepes_weighted-0.1.0.tar.gz
  • Upload date:
  • Size: 25.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for crepes_weighted-0.1.0.tar.gz
Algorithm Hash digest
SHA256 081b93e196c153ca91d92a560ab2dcf1410b4631089285fcd6aafef243a73038
MD5 3c0af440a1cf3c91a71e42541abcc16a
BLAKE2b-256 018636533ccdcb19d7a1717034fabcbbb31e8948867d2e31797a60473a8546b8

See more details on using hashes here.

File details

Details for the file crepes_weighted-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for crepes_weighted-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 903312477d14b5fc11f1c01aae35e82b3df9d421ad34de0c5e81a2505c46b00b
MD5 d1d58340f5439ca0b88d36561e960876
BLAKE2b-256 cbf581ef2850c6d30fc1c790ada1d2e1cea545eb61dbab1a4a6446f3984d83e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page