Tools to design and analyse CRISPRi experiments
Project description
CRISPRbact
Tools to design and analyse CRISPRi experiments in bacteria.
CRISPRbact currently contains an on-target activity prediction tool for the Streptococcus pyogenes dCas9 protein. This tool takes as an input the sequence of a gene of interest and returns a list of possible target sequences with the predicted on-target activity. Predictions are made using a linear model fitted on data from a genome-wide CRISPRi screen performed in E. coli (Cui et al. Nature Communications, 2018). The model predicts the ability of dCas9 to block the RNA polymerase when targeting the non-template strand (i.e. the coding strand) of a target gene.
Getting Started
Installation
For the moment, you can install this package only via PyPI
PyPI
$ pip install crisprbact
$ crisprbact --help
Usage: crisprbact [OPTIONS] COMMAND [ARGS]...
Options:
-v, --verbose
--help Show this message and exit.
Commands:
predict
API
Using this library in your python code.
from crisprbact import on_target_predict
guide_rnas = on_target_predict("ACCACTGGCGTGCGCGTTACTCATCAGATGCTGTTCAATACCGATCAGGTTATCGAAGTGTTTGTGATTGTTTGCCGCGCGCGTGGCGAAGGCCCGTGATGAAGGAAAAGTTTTGCGCTATGTTGGCAATATTGATGAAG")
for guide_rna in guide_rnas:
print(guide_rna)
output :
{'target': 'TCATCACGGGCCTTCGCCACGCGCG', 'guide': 'TCATCACGGGCCTTCGCCAC', 'start': 82, 'stop': 102, 'pam': 80, 'ori': '-', 'pred': -0.4719254873780802}
{'target': 'CATCACGGGCCTTCGCCACGCGCGC', 'guide': 'CATCACGGGCCTTCGCCACG', 'start': 81, 'stop': 101, 'pam': 79, 'ori': '-', 'pred': 1.0491308060379676}
{'target': 'CGCGCGCGGCAAACAATCACAAACA', 'guide': 'CGCGCGCGGCAAACAATCAC', 'start': 63, 'stop': 83, 'pam': 61, 'ori': '-', 'pred': -0.9021152826078697}
{'target': 'CCTGATCGGTATTGAACAGCATCTG', 'guide': 'CCTGATCGGTATTGAACAGC', 'start': 29, 'stop': 49, 'pam': 27, 'ori': '-', 'pred': 0.23853258873311955}
Command line interface
Predict guide RNAs activity
Input the sequence of a target gene and this script will output candidate guide RNAs for the S. pyogenes dCas9 with predicted on-target activity.
$ crisprbact predict --help
Usage: crisprbact predict [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.
Commands:
from-seq Outputs candidate guide RNAs for the S.
from-str Outputs candidate guide RNAs for the S.
From a string sequence:
The target input sequence can be a simple string.
$ crisprbact predict from-str --help
Usage: crisprbact predict from-str [OPTIONS] [OUTPUT_FILE]
Outputs candidate guide RNAs for the S. pyogenes dCas9 with predicted on-
target activity from a target gene.
[OUTPUT_FILE] file where the candidate guide RNAs are saved. Default =
"stdout"
Options:
-t, --target TEXT [required]
--help Show this message and exit.
$ crisprbact predict from-str -t ACCACTGGCGTGCGCGTTACTCATCAGATGCTGTTCAATACCGATCAGGTTATCGAAGTGTTTGTGATTGTTTGCCGCGCGCGTGGCGAAGGCCCGTGATGAAGGAAAAGTTTTGCGCTATGTTGGCAATATTGATGAAG guide-rnas.tsv
output file guide-rnas.tsv :
No seq_id is defined since it is from a simple string.
target PAM position prediction seq_id
TCATCACGGGCCTTCGCCACGCGCG 80 -0.4719254873780802 N/A
CATCACGGGCCTTCGCCACGCGCGC 79 1.0491308060379676 N/A
CGCGCGCGGCAAACAATCACAAACA 61 -0.9021152826078697 N/A
CCTGATCGGTATTGAACAGCATCTG 27 0.23853258873311955 N/A
You can also pipe the results :
$ crisprbact predict from-str -t ACCACTGGCGTGCGCGTTACTCATCAGATGCTGTTCAATACCGATCAGGTTATCGAAGTGTTTGTGATTGTTTGCCGCGCGCGTGGCGAAGGCCCGTGATGAAGGAAAAGTTTTGCGCTATGTTGGCAATATTGATGAAG | tail -n +2 | wc -l
From a sequence file
$ crisprbact predict from-seq --help
Usage: crisprbact predict from-seq [OPTIONS] [OUTPUT_FILE]
Outputs candidate guide RNAs for the S. pyogenes dCas9 with predicted on-
target activity from a target gene.
[OUTPUT_FILE] file where the candidate guide RNAs are saved. Default =
"stdout"
Options:
-t, --target FILENAME Sequence file [required]
-f, --seq-format [fasta|fa|gb|genbank]
Sequence file format [default: fasta]
--help Show this message and exit.
- Fasta file (could be a multifasta file)
$ crisprbact predict from-seq -t /tmp/seq.fasta guide-rnas.tsv
- GenBank file
$ crisprbact predict from-seq -t /tmp/seq.gb -f gb guide-rnas.tsv
Output file
target PAM position prediction input_id
ATTTGTTGGCAACCCAGCCAGCCTT 855 -0.7310112260341689 CP027060.1
CACGTCCGGCAATATTTCCGCGAAC 830 0.14773859036983505 CP027060.1
TCCGAGCGGCAACGTCTCTGATAAC 799 -0.4922487382950619 CP027060.1
GCTTAAAGGGCAAAATGTCACGCCT 769 -1.814666749464254 CP027060.1
CTTAAAGGGCAAAATGTCACGCCTT 768 -0.4285147731290152 CP027060.1
CGTTTGAGGAGATCCACAAAATTAT 732 -1.2437430146548256 CP027060.1
CATGAATGGTATAAACCGGCGTGCC 680 -0.8043242669169294 CP027060.1
Contributing
Clone repo
$ git clone https://gitlab.pasteur.fr/dbikard/crisprbact.git
Create a virtualenv
$ virtualenv -p python3.7 .venv
$ . .venv/bin/activate
$ pip install poetry
Install crisprbact dependencies
$ poetry install
Install hooks
In order to run flake8 and black for each commit.
$ pre-commit install
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file crisprbact-0.3.0.tar.gz.
File metadata
- Download URL: crisprbact-0.3.0.tar.gz
- Upload date:
- Size: 21.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.2 CPython/3.7.5 Linux/4.15.0-70-generic
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
61fba40f5039921bc7dc753f16710dc4181f6e6e2a0a44d5ffd96ca050b9190c
|
|
| MD5 |
3191239c812458cc8e19f36f6537d87c
|
|
| BLAKE2b-256 |
13a922f5c0e0e3b18844b1edcbb104d48d3b5aa6e006930d7ed8a59ab1ad3e81
|
File details
Details for the file crisprbact-0.3.0-py3-none-any.whl.
File metadata
- Download URL: crisprbact-0.3.0-py3-none-any.whl
- Upload date:
- Size: 20.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.2 CPython/3.7.5 Linux/4.15.0-70-generic
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d5084274d93f3894de7f86faf28d992666bc4035e9f7876831f9c214f09b8269
|
|
| MD5 |
a9d778e9cdf5bed1d59bad8bf6e058d5
|
|
| BLAKE2b-256 |
a59299f837ed6f0b13655ffefd7c4a6ee790264967b3889f2b37fd9fc5010541
|