Skip to main content

A Python package for performance criteria visualization

Project description

Performance Criteria

criteria_performance is a Python package that allows you to calculate and visualize performance criteria from CSV data and DataFrames. This module facilitates the evaluation of classification models by calculating essential metrics such as recall, precision, false positive rate (FPR), and false negative rate (FNR), as well as generating ROC, P-R, and DET curves.

Installation

You can install the package via pip:

pip install criteria-performance 

or

pip install criteria_performance 

Usage

Loading Data

To use the module, you need to provide a URL or path to a CSV file containing at least two columns, or a DataFrame:

  • The first column must contain the classes (1 for positive, -1 for negative).
  • The second column must contain the prediction scores.

Example CSV

Example of a CSV file structure compatible with the module:

Class Score
1 0.9
1 0.8
-1 0.4
-1 0.1

Example

Here is an example of using the PerformanceCriteria class:

from criteria import PerformanceCriteria

# Replace 'path_to_your_file.csv' with the path to your CSV file
performance = PerformanceCriteria('path_to_your_file.csv')

# Access metrics
print("Recall:", performance.get_recall())
print("Precision:", performance.get_precision())
print("False Positives (FP):", performance.get_fp())
print("False Negatives (FN):", performance.get_fn())

Visualization

The module includes methods to display performance criteria graphs:

  • dispROC(): Displays the ROC curve.
  • dispPR(): Displays the Precision-Recall curve.
  • dispDET(): Displays the DET curve.
  • displaygraphe(): Displays all graphs in a single figure.

Example:

performance.displaygraphe()
performance.show()  # Displays the figure

Calculated Metrics

The module calculates and returns the following metrics:

  • PPV (Positive Predictive Value): Positive predictive value.
  • NPV (Negative Predictive Value): Negative predictive value.
  • False Positives (FP): Number of false positives.
  • True Positives (TP): Number of true positives.
  • False Negatives (FN): Number of false negatives.
  • False Negative Rate (FNR): False negative rate.
  • False Positive Rate (FPR): False positive rate.
  • Recall: Sensitivity or true positive rate.
  • Precision: True positives divided by the total predicted positives.

Practical Tools

Here are two useful functions included in the module:

asarray2D(arrayA, arrayB)

Combines two arrays into a 2D array.

Usage:

import numpy as np
from criteria import asarray2D

arrayA = np.array([1, 2, 3])
arrayB = np.array([0.9, 0.8, 0.7])

combined_array = asarray2D(arrayA, arrayB)
print(combined_array)

asDataFrame(array)

Converts a 2D array into a Pandas DataFrame.

Usage:

from criteria import asDataFrame
import numpy as np

array = np.array([[1, 0.9], [1, 0.8], [-1, 0.4]])
df = asDataFrame(array)
print(df)
from criteria import PerformanceCriteria,Opentxt

data = Opentxt("Score_Sys_1.txt")
criter = PerformanceCriteria(data)

Authors

Developed by Olanda-Eyiba Chantry - chantryolanda85@gmail.com

License

This project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

criteria_performance-1.3.5.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

criteria_performance-1.3.5-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file criteria_performance-1.3.5.tar.gz.

File metadata

  • Download URL: criteria_performance-1.3.5.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for criteria_performance-1.3.5.tar.gz
Algorithm Hash digest
SHA256 5f975eb17caf7acb350959fe5a485d745858f7f297f5b86b37d90ea6cb144963
MD5 b497d88fd0b616b25e9315cf082c509c
BLAKE2b-256 c3e355a090af320c54e2cff98395d2ffce97ff12c00baaa511b497c761744adf

See more details on using hashes here.

File details

Details for the file criteria_performance-1.3.5-py3-none-any.whl.

File metadata

File hashes

Hashes for criteria_performance-1.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 c7d69bc6cf1176596dd7310cb59c3d8315cc792d933b161cb5dd3bb89b24cdd6
MD5 ff42da92d65031ec24139327cc0ad5f3
BLAKE2b-256 729e2067051ec451f9f81cfd84e0f3dc5dcd7878177c60be82300e6e4bb2c1f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page