Skip to main content

RFM Modeling Package for modeling Consumer behavior.

Project description

CRM-RFM Modeling v1.0.3

pip install crm-rfm-modeling

This package should be used with the intent of a CRM analysis in order to score their CRM dataset with the well known method of RFM. Methodology derived from the following paper:

from crm_rfm_modeling import rfm
from crm_rfm_modeling.rfm import RFM

model = RFM()
model = rfm.RFM()

RFM (Recency - Frequency - Monetary):

  • RFM Package used to model and score CRM data with the following scoring methods: Quintile Scoring, Mean Scoring, and Median Scoring. The package allows custom scoring on each variable related to Recency, Frequency, and Monetary. It is important to format the data when fitting the model depending on the dataset type listed below:

    Customer/User Level CRM Dataset:

    • The dataset should contain the Customer IDs to score against as an index. The Recency, Frequency, and Monetary columns should be labeled as so in order to score the variables and customers correctly.

    Transactional CRM Dataset:

    • The dataset should have a list of Cutomer IDs associated with each transaction as well as a date that can be interpreted by Pythons datetime package and a column associated the value of the transaction. The columns should be in order as so. There is no need to set the Customer IDs as the index as it will be set automatically during the scoring.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

crm-rfm-modeling-1.0.4.tar.gz (5.3 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page