croston model for intermittent time series
Project description
croston
A package to forecast intermittent time series using croston's method
example:
import numpy as np import random from croston import croston import matplotlib.pyplot as plt
a = np.zeros(50) val = np.array(random.sample(range(100,200), 10)) idxs = random.sample(range(50), 10)
ts = np.insert(a, idxs, val)
fit_pred = croston.fit_croston(ts, 10)
yhat = np.concatenate([fit_pred['croston_fittedvalues'], fit_pred['croston_forecast']])
plt.plot(ts) plt.plot(yhat)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
croston-0.1.2.2.tar.gz
(6.5 MB
view details)
Built Distribution
File details
Details for the file croston-0.1.2.2.tar.gz
.
File metadata
- Download URL: croston-0.1.2.2.tar.gz
- Upload date:
- Size: 6.5 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.4.2 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 96ae67bb8c0cebfc9c81fd0ebdd56501dd193d8ec6e65b3a18c6892c92af40a2 |
|
MD5 | 36c9f1309bfe3c6925f079d66bdac542 |
|
BLAKE2b-256 | 87d28ad73f6b225b5781963dbdca29df0abd4c0e2386b3a646828b01bcc2d771 |
File details
Details for the file croston-0.1.2.2-py3-none-any.whl
.
File metadata
- Download URL: croston-0.1.2.2-py3-none-any.whl
- Upload date:
- Size: 3.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.4.2 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 06a31493994b7846ddd5566260b9259de734ff884dcc949aed3a3a5fd988ddce |
|
MD5 | 59cdc3bb3b9639a38281a50323cac5d6 |
|
BLAKE2b-256 | 9f6aaf6d5db2fe68a260f80e570f42e4b8874b25a84dcc1ccd13dd72d137c5c7 |