Compressed Sensing library for 1D Spectroscopic Profiling Data
Project description
cs1
Compressed Sensing library for 1D Spectroscopic Profiling
Installation
pip install cs1
A simple startup
from cs1 import cs, adaptive
# Generate common non-adaptive bases and save to a local pickle file.
# The generation process can be very slow, so save it for future use.
cs.Generate_PSIHs(n, savepath = 'PSIHs_' + str(n) + '.pkl') # n is the data/signal dimensionality
# load back bases
file = open('PSIs_' + str(n) + '.pkl','rb')
PSIs = pickle.load(file)
file.close()
# sparsity analysis
Analyze_Sparsity(x, PSIs)
# compare different bases and sampling ratio on a single sample
rmses = GridSearch_Sensing_n_Recovery(x, PSIs, solver = 'LASSO') # returns relative MSEs
low-level cs functions
dftmtx()
dctmtx()
hwtmtx()
Sensing()
Recovery()
Mutual_Coherence()
...
singal processing functions for other domains
Simulate_ECG()
dct_lossy_signal_compression()
dft_lossy_signal_compression()
img_dct()
img_dft()
dct_lossy_image_compression()
dft_lossy_image_compression()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
cs1-0.0.2-py3-none-any.whl
(2.2 kB
view details)
File details
Details for the file cs1-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: cs1-0.0.2-py3-none-any.whl
- Upload date:
- Size: 2.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/1.5.0 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e27889dec934d972cf0803d4a216bb47621b9c384858e41c451f5373d8436107 |
|
MD5 | 195755e0013454116e05f4da1796269e |
|
BLAKE2b-256 | 3e96476a3b3223cd635a5bd3d8ae41ce44b5b53b34b96fa645171a78cdaf2306 |