Skip to main content

Compressed Sensing library for 1D Spectroscopic Profiling Data

Project description

cs1

Compressed Sensing library for 1D (one-dimensional) Spectroscopic Profiling Data

package module sub-module description
cs1
cs1.cs basic functions for CS sensing, recovery, hyper-parameter grid-search, etc.
cs1.basis cs1.basis.common commonly used non-adaptive CS transform bases[1]
cs1.basis.adaptive adaptive CS transform bases, e.g., LDA (linear discriminant analysis)-based, EBP (eigenvector-based projection)[2], VAE (variational auto-encoder)
cs1.metrics CS-related metrics, e.g., mutual coherence, sparsity, MSE, KLD
cs1.security cs1.security.tvsm time-variant sensing matrix mechanism
cs1.domain cs1.domain.audio contains functions for audio and other one-dimensional signal processing. e.g., wave file I/O, lossy compression, ECG simulator
cs1.domain.image contains functions for image processing. e.g., image CS, lossy compression
cs1.gui provides a web-based playground for researchers. users can try different CS bases and sampling ratios

Publications:
[1] Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, 2020, doi: 10.1016/j.talanta.2019.120681
[2] Task-adaptive eigenvector-based projection (EBP) transform for compressed sensing: A case study of spectroscopic profiling sensor [J]. Analytical Science Advances. Chemistry Europe, 2021, doi: 10.1002/ansa.202100018

Installation

pip install cs1

A simple startup

import cs1

# Generate common non-adaptive bases and save to a local pickle file.
# The generation process can be very slow, so save it for future use.
cs1.basis.common.Generate_PSIs(n, savepath = 'PSIs_' + str(n) + '.pkl') # n is the data/signal dimensionality

# load back bases
file = open('PSIs_' + str(n) + '.pkl','rb')
PSIs = pickle.load(file)
file.close()

# sparsity analysis
cs1.metrics.analyze_sparsity(x, PSIs)
# compare different bases and sampling ratio on a single sample
rmses = cs1.cs.GridSearch_Sensing_n_Recovery(x, PSIs, solver = 'LASSO') # returns relative MSEs

low-level cs functions

from cs1.basis.common import *

dftmtx()
dctmtx()
hwtmtx()

from cs1.cs import *

sensing()
recovery()

from cs1.metrics import *

mutual_coherence()
...

singal processing functions for audio / image domains

from cs1.domain.audio import *

simulate_ECG()
dct_lossy_signal_compression()
dft_lossy_signal_compression()

from cs1.domain.image import *

img_dct()
img_dft()
dct_lossy_image_compression()
dft_lossy_image_compression()

adaptive cs bases

from cs1.basis.adaptive import *

PSI, _ = EBP(X) # X is a m-by-n training dataset. PSI is the EBP basis
PSI, _, _ = LDA(X, y, display = True) # X and y are training dataset. PSI is the LDA basis.

run as a local web server

python -m cs1.gui.run

You can then access the web GUI at the 5006 port:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cs1-0.2.0.tar.gz (2.9 MB view details)

Uploaded Source

Built Distribution

cs1-0.2.0-py3-none-any.whl (3.0 MB view details)

Uploaded Python 3

File details

Details for the file cs1-0.2.0.tar.gz.

File metadata

  • Download URL: cs1-0.2.0.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for cs1-0.2.0.tar.gz
Algorithm Hash digest
SHA256 b332b6aa3bad1d9133d5eb4853b4f4f5fbd1fcc838aac3e98e9840037b069cfc
MD5 c0d325c75f57a0d6d5cfec2f17f7ced7
BLAKE2b-256 5345d7955af4f3d31d8875166683bd5647b27a1db292c18331c5005db1774d91

See more details on using hashes here.

File details

Details for the file cs1-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: cs1-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for cs1-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0ce4dd8b9e863b649a76fead534715622f8f0e21adedc3278df914b62a06c1e2
MD5 f4cdfd3dff0f58d939685585ed3830c7
BLAKE2b-256 8505e99046e60a8d75d8c080a4768661dc6f2ad1ddf4e03a953857ad7d75ccd3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page