Skip to main content

Cubic spline approximation (smoothing)

Project description

csaps

PyPI version Supported Python versions GitHub Actions (Tests) Documentation Status Coverage Status License

csaps is a Python package for univariate, multivariate and n-dimensional grid data approximation using cubic smoothing splines. The package can be useful in practical engineering tasks for data approximation and smoothing.

Installing

Use pip for installing:

pip install -U csaps

The module depends only on NumPy and SciPy. Python 3.9 or above is supported.

Simple Examples

Here is a couple of examples of smoothing data.

An univariate data smoothing:

import numpy as np
import matplotlib.pyplot as plt

from csaps import csaps

np.random.seed(1234)

x = np.linspace(-5., 5., 25)
y = np.exp(-(x/2.5)**2) + (np.random.rand(25) - 0.2) * 0.3
xs = np.linspace(x[0], x[-1], 150)

ys = csaps(x, y, xs, smooth=0.85)

plt.plot(x, y, 'o', xs, ys, '-')
plt.show()

univariate

A surface data smoothing:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from csaps import csaps

np.random.seed(1234)
xdata = [np.linspace(-3, 3, 41), np.linspace(-3.5, 3.5, 31)]
i, j = np.meshgrid(*xdata, indexing='ij')
ydata = (3 * (1 - j)**2. * np.exp(-(j**2) - (i + 1)**2)
         - 10 * (j / 5 - j**3 - i**5) * np.exp(-j**2 - i**2)
         - 1 / 3 * np.exp(-(j + 1)**2 - i**2))
ydata = ydata + (np.random.randn(*ydata.shape) * 0.75)

ydata_s = csaps(xdata, ydata, xdata, smooth=0.988)

fig = plt.figure(figsize=(7, 4.5))
ax = fig.add_subplot(111, projection='3d')
ax.set_facecolor('none')
c = [s['color'] for s in plt.rcParams['axes.prop_cycle']]
ax.plot_wireframe(j, i, ydata, linewidths=0.5, color=c[0], alpha=0.5)
ax.scatter(j, i, ydata, s=10, c=c[0], alpha=0.5)
ax.plot_surface(j, i, ydata_s, color=c[1], linewidth=0, alpha=1.0)
ax.view_init(elev=9., azim=290)

plt.show()

surface

Documentation

More examples of usage and the full documentation can be found at https://csaps.readthedocs.io.

Testing

We use pytest for testing.

cd /path/to/csaps/project/directory
pip install -e .[tests]
pytest

Algorithm and Implementation

csaps Python package is inspired by MATLAB CSAPS function that is an implementation of Fortran routine SMOOTH from PGS (originally written by Carl de Boor).

Also the algothithm implementation in other languages:

  • csaps-rs Rust ndarray/sprs based implementation
  • csaps-cpp C++11 Eigen based implementation (incomplete)

References

C. de Boor, A Practical Guide to Splines, Springer-Verlag, 1978.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

csaps-1.2.0.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

csaps-1.2.0-py3-none-any.whl (18.9 kB view details)

Uploaded Python 3

File details

Details for the file csaps-1.2.0.tar.gz.

File metadata

  • Download URL: csaps-1.2.0.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Windows/10

File hashes

Hashes for csaps-1.2.0.tar.gz
Algorithm Hash digest
SHA256 346569028eedc6102ac4bcd799aed7b5150e587599719d91b589e21202c25c7a
MD5 2c7b3a20c59210bea1d0852f6a80df0b
BLAKE2b-256 3c60251c772f3f72f263eb93faa39152a411ace518e33ad33730eeca4fb37024

See more details on using hashes here.

File details

Details for the file csaps-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: csaps-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 18.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Windows/10

File hashes

Hashes for csaps-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 648283410864c816a7da55be72d54aeda87993f35c3533eab9d2b25399ddb7e5
MD5 5c68c7b49b41efc7d492b1a1963ef12b
BLAKE2b-256 39bbbab6eed263cd367cc40362100ea9ae614ac83c94cd8e765421d3050075b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page