Skip to main content

Model peptide-MHC I complexes using anchor distance restrains in MODELLER

Project description

PANDORA

Build Coverage Status Anaconda-Server Badge Documentation Status

Peptide ANchored mODelling fRAmework for peptide-MHC complexes

PANDORA

Contents

Overview

PANDORA is anchor restrained modelling pipeline for generating peptide-MHC structures.

It contains multiple functions to pre-process data and it's able to exploit different crucial domain knowledge provided by the user to guide the modelling.

PANDORA documentation can be found at: https://csb-pandora.readthedocs.io/en/latest/

Dependencies

PANDORA requires MODELLER, python and some python libraries to be installed. The following installations are required to start PANDORA installation:

The installation process will take care of installing the following dependencies (see Installation), no need to install them yourself.

The following dependencies can be used to predict peptide anchor postisions, but have to be manually installed:

Installation

Conda Installation (suggested)

1. Get a Modeller Key License:

Prior to PANDORA installation, you need to first activate MODELLER's license. Please request MODELLER license at: https://salilab.org/modeller/registration.html

Replace XXXX with your MODELLER License key and run the command:

alias KEY_MODELLER='XXXX'

2. Install PANDORA

Install with conda:

conda install -c csb-nijmegen csb-pandora -c salilab -c bioconda

GitHub / Pypi installation

1. Install Modeller:

Prior to PANDORA installation, you need to first activate MODELLER's license. Please request MODELLER license at: https://salilab.org/modeller/registration.html

Replace XXXX with your MODELLER License key and run the command:

alias KEY_MODELLER='XXXX'

Then Install MODELLER with:

conda install -y -c salilab modeller

2. Install Muscle

PANDORA relies on muscle (https://anaconda.org/bioconda/muscle) that can be installed via bioconda

conda install -c bioconda muscle

3. Install PANDORA

Pypi installation:

pip install csb-pandora

Alternatively, GitHub installation:

Clone the repository:

git clone https://github.com/X-lab-3D/PANDORA.git

Enter the cloned directory and then install the dependencies!

cd PANDORA
pip install -e .

Generate / download template Database

PANDORA needs a PDB template database to work (retrieved from IMGT database). You can download it from https://github.com/X-lab-3D/PANDORA_database (pMHC I only, generated on 23/03/2021) and follow the instructions. Please be sure you re-path your database as explained in the instructions.

Alternatively, you can generate your template database(suggested) with the following python3 code:

## import requested modules
from PANDORA.PMHC import PMHC
from PANDORA.Pandora import Pandora
from PANDORA.Database import Database

## A. Create local Database
db = Database.Database()
db.construct_database(save='path/to/pandora_Database.pkl')

Note: generating a database can take more than one hour and a half, so we advice to run it as background process or submit it as cluster job.

(Optional) Install NetMHCpan and/or NetMHCIIpan

PANDORA lets the user if he wants to predict peptide's anchor residues instead of using conventional predefined anchor residues. In that case you need to download NetMHCpan (for peptide:MHC class I) and/or NetMHCIIpan (for peptide:MHC class II). To install, you can simply run:

python netMHCpan_install.py

Tutorial

Example 1 : Generating a peptide:MHC complex given the peptide sequence

PANDORA requires at least these information to generate models:

  • Peptide sequence
  • MHC allele

Steps: A. Load the template database (see installation, point 4)

B. Creating a Template object based on the given target information

C. Generating n number of pMHC models (Default n=20)

Please note that you can specify output directory yourself, otherwise will be generated in a default directory

## import requested modules
from PANDORA.PMHC import PMHC
from PANDORA.Pandora import Pandora
from PANDORA.Database import Database

## A. Create local Database
db = Database.load('path/to/pandora_Database.pkl')

## B. Create Target object
target = PMHC.Target(id = 'myTestCase'
    allele_type = 'HLA-A*0201'
    peptide = 'LLFGYPVYV',
    anchors = [2,9])

## C. Perform modelling
case = Pandora.Pandora(target, db)
case.model()

Example 2 : Create multiple loop models in a your given directory

There are some options provided that you can input them as arguments to the functions.

For instance:

  • Generate more models for your modelling case
  • Specify the output directory yourself
  • Give your target a name
  • Predict anchors by NetMHCpan

Please note that, if anchors is not specified or use_netmhcpan is set to False, PANDORA will automatically assign canonical anchors (P2 and PΩ).

from PANDORA.PMHC import PMHC
from PANDORA.Pandora import Pandora
from PANDORA.Database import Database

## A. load the pregenerated Database  of all pMHC PDBs as templates
db = Database.load('path/to/pandora_Database.pkl')

## B. Create Target object
target = PMHC.Target(id = 'myTestCase'
    allele_type = ['HLA-B*5301', 'HLA-B*5301'],
    peptide = 'TPYDINQML',
    use_netmhcpan = True)

## C. Perform modelling
case = Pandora.Pandora(target, db, output_dir = '/your/directory/')
case.model(n_loop_models=100)  # Generates 100 models

Example 3 : Benchmark PANDORA on one modelling case

Evaluate the framework on a target with a known experimental structure:

  • Provide the PDB ID for the Target class
  • Set benchmark=True for the modelling (calculates L-RMSD to show how far the model is from the near-native structure)
from PANDORA.PMHC import PMHC
from PANDORA.Pandora import Pandora
from PANDORA.Database import Database

## A. Load pregenerated database of all pMHC PDBs as templates
db = Database.load('path/to/pandora_Database.pkl')

## B. Create Target object
target = PMHC.Target('1A1M',
    db.MHCI_data['1A1M'].allele_type,
    db.MHCI_data['1A1M'].peptide,
    anchors = db.MHCI_data['1A1M'].anchors)

## C. Perform modelling
case = Pandora.Pandora(target, db)
case.model(benchmark=True)

Example 4: Model a peptide:MHCI complex with an alpha helix in the peptide

Input domain secondary structure prediction information (Helix/Beta strand):

from PANDORA.PMHC import PMHC
from PANDORA.Pandora import Pandora
from PANDORA.Database import Database

## A. Load pregenerated database of all pMHC PDBs as templates
db = Database.load('path/to/pandora_Database.pkl')

## B. Create Target object
target = PMHC.Target(id = 'myMHCIITestCase'
    allele_type = ['MH1-B*2101', 'MH1-B*2101'],
    peptide = 'TAGQSNYDRL',
    anchors = [2,10],
    helix = ['4', '9'])

## C. Perform modelling
case = Pandora.Pandora(target, db)
case.model(helix=target.helix)

Example 5: Benchmark PANDORA on multiple cases (running in parallel on multiple cores)

PANDORA can model large batches of peptides in parallel. You need to provide the following peptide information in a .tsv or .csv file:

  • Peptide sequence, MHC Allele name Note: you can also add various information to your file, including anchors for each case, templates, IDs.

The Wrapper class will take care of generating PANDORA target objects and parallelize the modelling on the given number of cores:

from PANDORA.Pandora import Pandora
from PANDORA.Database import Database
from PANDORA.Wrapper import Wrapper

## A. Load pregenerated database of all pMHC PDBs as templates
db = Database.load('path/to/pandora_Database.pkl')

## B. Create the wrapper object
wrap =  Wrapper()

## C. Create all Target Objects based on peptides in the .tsv file
wrap.create_targets('datafile.tsv', db)

## C. Perform modelling
wrap.run_pandora(num_cores=128)

Example 6: Generating a peptide:MHC class II complex given the peptide sequence

To model a peptide:MHC class II complex, you only need to specify that in PMHC.Target() function: as MHC_class='II' (By default it is set to model MHC class I).

from PANDORA.PMHC import PMHC
from PANDORA.Pandora import Pandora
from PANDORA.Database import Database

## A. Load pregenerated database of all pMHC PDBs as templates
db = Database.load('path/to/pandora_Database.pkl')

target = PMHC.Target(id='myMHCIITestCase'
    MHC_class = 'II',
    allele_type = ['HLA-DRA*0102', 'HLA-DRA*0101', 'HLA-DRB1*0101'],
    peptide = 'GELIGILNAAKVPAD',
    anchors = [4, 7, 9, 12])

case = Pandora.Pandora(target, db)
case.model()

Note: For MHC II, no canonical anchors can be defined. Therefore the user must either install and use NetMHCIIpan or directly input the anchors positions as anchors in PMHC.Target()

Code Design

PANDORA has been implemented in an Object-Oriented Design(OOD). Resulting in a comprehensible and user-friendly framework.

see Class Diagram

Output

The following file structure is prepared to store the output files for each case. Each modelling case is given a specific name based on target and template ID.

Please note that the modelling results consisting genretaed models by default are stored in ./PANDORA_files/data/outputs/ directory

  • Main outputs: *molpdf_DOPE.tsv, BL.pdb, modeller.log(
  • Input files prepared for modelling: contacs_.list, .ali
  • .py files: MODELLER scripts
  • MODELLER by product outputs(Generated during the modelling): D0, DL*, IL.pdb , , *.ini, *.lrsr, *.rsr, .sch, ...
PANDORA_files
  └── data
     └── outputs                         Default directory to save output
        └── <target_name>_<template_id>  Each user's modelling case is given a specific name

           ├── molpdf_DOPE.tsv           Ranking all models by molpdf and DOPE modeller's scoring functions
           ├── *BL*.pdb                  Final models
           ├── modeller.log              Printing log file generated by MODELLER, describing modelling steps, or any issues arose along modelling

           ├── *.ali                     Alignment file between template(s) and target used for modelling
           ├── contacts_*.list           Contact restraints

           ├── MyLoop.py                 MODELLER script to set loop modelling parameters for the peptide
           ├── cmd_modeller_ini.py       MODELLER script to generate an initial model to extract restraints from
           ├── cmd_modeller.py           MODELLER script to set the main modelling parameters

           ├── *.ini                     Model generated placing the target atoms at the same coordinate as the template's atoms
           ├── *IL*.pdb                  Initial loop model
           └── ...


Issues

If you have questions or find a bug, please report the issue in the Github issue channel.

Project details


Release history Release notifications | RSS feed

This version

0.9

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

csb_pandora-0.9.tar.gz (60.1 kB view details)

Uploaded Source

File details

Details for the file csb_pandora-0.9.tar.gz.

File metadata

  • Download URL: csb_pandora-0.9.tar.gz
  • Upload date:
  • Size: 60.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.36.1 importlib-metadata/4.11.3 keyring/18.0.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.4

File hashes

Hashes for csb_pandora-0.9.tar.gz
Algorithm Hash digest
SHA256 7e339e94fee4d26c2b1489ea6d27ffcd137eff356815f6a3a4a244b5b045db81
MD5 f151b9180bfcd1dc8312b45a1efbdff5
BLAKE2b-256 af5b2e98b7d74f4dd7a9d3d84cb591bb38a37922ee793d8735c45b90bf14285b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page