A package for computer science education containing modules for image processing and chart creation.
Project description
Computer Science Education - Image Processing Module and Visualization of Distributions
Description
This project consists of two modules for computer science education:
-
Image Processing: A module for simple editing and analysis of images. It allows loading, saving, and displaying images, calculating color depths, and converting palette-based images to RGB.
-
Visualization of Distributions: A module for visualizing two distributions side by side as line or bar charts. Ideal for presenting statistical data in educational settings.
Modules
imageprocessing
This module provides functions for simple processing and analysis of images. The main functions are:
load_image(path_and_filename)
: Loads an image and calculates its color depth.transform_palette_image_to_rgb(np_image_array, palette)
: Transforms a palette-based image into an RGB image.pillow_image(numpy_array, palette=None)
: Converts a NumPy array into a Pillow image.save_image(path, np_image_array, palette=None)
: Saves an image to a file.show(image_data, show_axes=True, label_data=None, palette_data=None, show_grid=False, grid_color='black', number_of_ticks=None, number_of_columns=1, figsize=None)
: Displays images in a plot.plot_histogram(histogram, palette='inferno')
: Plots a histogram of the brightness values of an image.
diagrams
This module provides a simple way to visualize two distributions. The main function is:
show_distributions(distribution1, distribution2, title1="", title2="", mode="Lines")
: Visualizes two distributions as line or bar charts.
Example Usage
Image Processing
from imageprocessing import load_image, show, save_image
# Load image and calculate color depth
image, color_mode, color_depth, palette = load_image('path/to/image.png')
print(f"Color depth: {color_depth} Bit")
# Display image
show(image)
# Save image
save_image('path/to/output_image.png', image, palette)
License
This project is licensed under the MIT License with additional terms for attribution. See the LICENSE file for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file csedu-0.1.0.tar.gz
.
File metadata
- Download URL: csedu-0.1.0.tar.gz
- Upload date:
- Size: 479.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d65725c579c8f088dc84336576f4302750a9169111b654a2763b2a6098d5021f |
|
MD5 | c93f97fd4b64cdc862574733fa1bf924 |
|
BLAKE2b-256 | b6465ec687ca0be4dd1d5ae668654292cd78c3676dc451b40a33e6551448f9df |
File details
Details for the file csedu-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: csedu-0.1.0-py3-none-any.whl
- Upload date:
- Size: 7.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b5c64b541f9e446cca5ee5c06a8c956ae303826699daa5f22b9317de437055dc |
|
MD5 | 8ce1e5b2bba03fca3eb12e6d93c4babc |
|
BLAKE2b-256 | 5c6d94f19873cd88cc1cab88ee76be589f3f092683436c2175c8cb3b5ad2b49c |