Skip to main content

Convert CSV files into a SQLite database

Project description

csvs-to-sqlite

PyPI Changelog Tests License

Convert CSV files into a SQLite database. Browse and publish that SQLite database with Datasette.

Basic usage:

csvs-to-sqlite myfile.csv mydatabase.db

This will create a new SQLite database called mydatabase.db containing a single table, myfile, containing the CSV content.

You can provide multiple CSV files:

csvs-to-sqlite one.csv two.csv bundle.db

The bundle.db database will contain two tables, one and two.

This means you can use wildcards:

csvs-to-sqlite ~/Downloads/*.csv my-downloads.db

If you pass a path to one or more directories, the script will recursively search those directories for CSV files and create tables for each one.

csvs-to-sqlite ~/path/to/directory all-my-csvs.db

Handling TSV (tab-separated values)

You can use the -s option to specify a different delimiter. If you want to use a tab character you'll need to apply shell escaping like so:

csvs-to-sqlite my-file.tsv my-file.db -s $'\t'

Refactoring columns into separate lookup tables

Let's say you have a CSV file that looks like this:

county,precinct,office,district,party,candidate,votes
Clark,1,President,,REP,John R. Kasich,5
Clark,2,President,,REP,John R. Kasich,0
Clark,3,President,,REP,John R. Kasich,7

(Real example taken from the Open Elections project)

You can now convert selected columns into separate lookup tables using the new --extract-column option (shortname: -c) - for example:

csvs-to-sqlite openelections-data-*/*.csv \
    -c county:County:name \
    -c precinct:Precinct:name \
    -c office -c district -c party -c candidate \
    openelections.db

The format is as follows:

column_name:optional_table_name:optional_table_value_column_name

If you just specify the column name e.g. -c office, the following table will be created:

CREATE TABLE "office" (
    "id" INTEGER PRIMARY KEY,
    "value" TEXT
);

If you specify all three options, e.g. -c precinct:Precinct:name the table will look like this:

CREATE TABLE "Precinct" (
    "id" INTEGER PRIMARY KEY,
    "name" TEXT
);

The original tables will be created like this:

CREATE TABLE "ca__primary__san_francisco__precinct" (
    "county" INTEGER,
    "precinct" INTEGER,
    "office" INTEGER,
    "district" INTEGER,
    "party" INTEGER,
    "candidate" INTEGER,
    "votes" INTEGER,
    FOREIGN KEY (county) REFERENCES County(id),
    FOREIGN KEY (party) REFERENCES party(id),
    FOREIGN KEY (precinct) REFERENCES Precinct(id),
    FOREIGN KEY (office) REFERENCES office(id),
    FOREIGN KEY (candidate) REFERENCES candidate(id)
);

They will be populated with IDs that reference the new derived tables.

Installation

$ pip install csvs-to-sqlite

csvs-to-sqlite now requires Python 3. If you are running Python 2 you can install the last version to support Python 2:

$ pip install csvs-to-sqlite==0.9.2

csvs-to-sqlite --help

Usage: csvs-to-sqlite [OPTIONS] PATHS... DBNAME

  PATHS: paths to individual .csv files or to directories containing .csvs

  DBNAME: name of the SQLite database file to create

Options:
  -s, --separator TEXT         Field separator in input .csv
  -q, --quoting INTEGER        Control field quoting behavior per csv.QUOTE_*
                               constants. Use one of QUOTE_MINIMAL (0),
                               QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or
                               QUOTE_NONE (3).
  --skip-errors                Skip lines with too many fields instead of
                               stopping the import
  --replace-tables             Replace tables if they already exist
  -t, --table TEXT             Table to use (instead of using CSV filename)
  -c, --extract-column TEXT    One or more columns to 'extract' into a
                               separate lookup table. If you pass a simple
                               column name that column will be replaced with
                               integer foreign key references to a new table
                               of that name. You can customize the name of the
                               table like so:
                                   state:States:state_name
                               This will pull unique values from the 'state'
                               column and use them to populate a new 'States'
                               table, with an id column primary key and a
                               state_name column containing the strings from
                               the original column.
  -d, --date TEXT              One or more columns to parse into ISO formatted
                               dates
  -dt, --datetime TEXT         One or more columns to parse into ISO formatted
                               datetimes
  -df, --datetime-format TEXT  One or more custom date format strings to try
                               when parsing dates/datetimes
  -pk, --primary-key TEXT      One or more columns to use as the primary key
  -f, --fts TEXT               One or more columns to use to populate a full-
                               text index
  -i, --index TEXT             Add index on this column (or a compound index
                               with -i col1,col2)
  --shape TEXT                 Custom shape for the DB table - format is
                               csvcol:dbcol(TYPE),...
  --filename-column TEXT       Add a column with this name and populate with
                               CSV file name
  --no-index-fks               Skip adding index to foreign key columns
                               created using --extract-column (default is to
                               add them)
  --no-fulltext-fks            Skip adding full-text index on values extracted
                               using --extract-column (default is to add them)
  --just-strings               Import all columns as text strings by default
                               (and, if specified, still obey --shape,
                               --date/datetime, and --datetime-format)

  --version                    Show the version and exit.
  --help                       Show this message and exit.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

csvs_to_sqlite-1.2.tar.gz (13.7 kB view details)

Uploaded Source

Built Distribution

csvs_to_sqlite-1.2-py2.py3-none-any.whl (16.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file csvs_to_sqlite-1.2.tar.gz.

File metadata

  • Download URL: csvs_to_sqlite-1.2.tar.gz
  • Upload date:
  • Size: 13.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for csvs_to_sqlite-1.2.tar.gz
Algorithm Hash digest
SHA256 0d47d2a006ad58204bcb40ea511e59b62f1aacb6546bcd4f9096253910e053cd
MD5 ff3d886e972f2bb39b1780121c64474a
BLAKE2b-256 5e47482a3f722fbab49c248527214a4ab294d6039324baaa8222a32d3cf8fd91

See more details on using hashes here.

File details

Details for the file csvs_to_sqlite-1.2-py2.py3-none-any.whl.

File metadata

  • Download URL: csvs_to_sqlite-1.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 16.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for csvs_to_sqlite-1.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 6b5762635852d40af3b9e0680a5e6e341b3d37981e1abd3aa6536f7b163e21ea
MD5 707cc6f17c6dde339eb2d3c2a674df54
BLAKE2b-256 5155ec09fac771e8b2c222ae05b541b41f57260aefe1393d3ea5367bf07efffd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page