CTC-based chroma feature exractors
Project description
Using Weakly Aligned Score–Audio Pairs to Train Deep Chroma Models for Cross-Modal Music Retrieval
Background
This repository contains accompanying code for the following papers. If you use code from this repository, please consider citing them.
[1]: Frank Zalkow and Meinard Müller: Using Weakly Aligned Score–Audio Pairs to Train Deep Chroma Models for Cross-Modal Music Retrieval. In Proceedings of the International Society for Music Information Retrieval Conference, Montréal, Canada, 2020.
[2]: Frank Zalkow and Meinard Müller: CTC-Based Learning of Deep Chroma Features for Cross-Modal Music Retrieval. Currently under review.
There is an accompanying website for the paper.
https://www.audiolabs-erlangen.de/resources/MIR/2020-ISMIR-ctc-chroma
Usage
You can install the code in this repository with pip:
pip install ctc_chroma
There are two ways to use the models of this repository. The first way is to use a Jupyter notebook. This notebook applies the model and visualizes its output. The second way is to use a script to batch process audio files in a folder. This script can be executed like this:
python apply_model.py -m MODEL_ID -i INPUT -o OUTPUT
Here, INPUT
is a directory with audio files, OUTPUT
is a directory for the output files, and MODEL_ID
specifies the model variant. There are several model variants contained in the repository. These variants are due to different versions of the training data (used in the papers [1] and [2], respectively), due to different training and validation splits, and due to different training procedures. The following table specifies all model identifiers of the repository.
Model Identifier | Used in Paper | Training Procedure |
---|---|---|
v1_ctc_train1234valid5 | [1] | CTC |
v1_ctc_train123valid4 | [1] | CTC |
v1_ctc_train2345valid1 | [1] | CTC |
v1_ctc_train234valid5 | [1] | CTC |
v1_ctc_train3451valid2 | [1] | CTC |
v1_ctc_train345valid1 | [1] | CTC |
v1_ctc_train4512valid3 | [1] | CTC |
v1_ctc_train451valid2 | [1] | CTC |
v1_ctc_train5123valid4 | [1] | CTC |
v1_ctc_train512valid3 | [1] | CTC |
v2_ctc_train123valid4 | [2] | CTC |
v2_ctc_train234valid5 | [2] | CTC |
v2_ctc_train345valid1 | [2] | CTC |
v2_ctc_train451valid2 | [2] | CTC |
v2_ctc_train512valid3 | [2] | CTC |
v2_linear_train123valid4 | [2] | Crossentropy, linear alignment |
v2_linear_train234valid5 | [2] | Crossentropy, linear alignment |
v2_linear_train345valid1 | [2] | Crossentropy, linear alignment |
v2_linear_train451valid2 | [2] | Crossentropy, linear alignment |
v2_linear_train512valid3 | [2] | Crossentropy, linear alignment |
v2_strong_train123valid4 | [2] | Crossentropy, strong alignment |
v2_strong_train234valid5 | [2] | Crossentropy, strong alignment |
v2_strong_train345valid1 | [2] | Crossentropy, strong alignment |
v2_strong_train451valid2 | [2] | Crossentropy, strong alignment |
v2_strong_train512valid3 | [2] | Crossentropy, strong alignment |
Recordings
For making it easy to directly try out the code of this repository, we included two excerpts from public domain recordings, which we downloaded from Musopen. The excerpts correspond to the musical sections that are used for the figures in the paper (Figure 3 and 4). However, different performances (not public domain) have been used to generate the figures in the paper. Below you find a small table with details for the excerpts.
Filename | Composer | Work | Performer | Description |
---|---|---|---|---|
Beethoven_Op067-01_DavidHighSchool.wav | Beethoven | Symphony no. 5, op. 67 | Davis High School Symphony Orchestra | First movement, first theme |
Beethoven_Op002-2-01_Pitman.wav | Beethoven | Piano Sonata no. 2, op. 2 no. 2 | Paul Pitman | First movement, second theme |
Acknowledgements
Frank Zalkow and Meinard Müller are supported by the German Research Foundation (DFG-MU 2686/11-1, MU 2686/12-1). We thank Daniel Stoller for fruitful discussions on the CTC loss, and Michael Krause for proof-reading the manuscript. We also thank Stefan Balke and Vlora Arifi-Müller as well as all students involved in the annotation work, especially Lena Krauß and Quirin Seilbeck. The International Audio Laboratories Erlangen are a joint institution of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Fraunhofer Institute for Integrated Circuits IIS. The authors gratefully acknowledge the compute resources and support provided by the Erlangen Regional Computing Center (RRZE).
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ctc_chroma-2.1.tar.gz
.
File metadata
- Download URL: ctc_chroma-2.1.tar.gz
- Upload date:
- Size: 14.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3422c9028211bde448d669786c4c17d04dced3d8f3a5c9da3c283c1c9b487910 |
|
MD5 | 5afc4b5501ab6f0a1726da5a1494de99 |
|
BLAKE2b-256 | d83e927601a679a4bd5a2adfa7bd67ee012575c063dd8de1328cc064198823a9 |
File details
Details for the file ctc_chroma-2.1-py3-none-any.whl
.
File metadata
- Download URL: ctc_chroma-2.1-py3-none-any.whl
- Upload date:
- Size: 14.9 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a3de5ecd62f872688c7702f356df3f2e7d50f40a196e3ed38378d043e48eec99 |
|
MD5 | f9435f4a4a9e3a3a33e1926ea74cffaf |
|
BLAKE2b-256 | 4ebae11ad3548ad48f7edc8bbf77c3270e0d5bf8e940028258b0519d28f36486 |