No project description provided
Project description
CT-NAS
This module contains an API access to a Neural Architecture Search dataset on a search space called "computational themes". Such themes are small directed acyclic graphs (DAGs) with a vertex collapse condition. This condition makes the left and the right graph in the picture being equivalent / isomorphic.
The dataset contains computations of feed-forward neural networks with different hidden structural priors based on these themes. By this, you can search for connections between graph theoretic properties of the search space and computational properties of the neural network models.
Installation
Via poetry (recommended for projects) using PyPi:
poetry add ctnas
Directly with pip from PyPi:
pip install ctnas
Via conda in your environment.yml (recommended for reproducible experiments):
name: exp01
channels:
- defaults
dependencies:
- pip>=20
- pip:
- ctnas
From public GitHub:
pip install --upgrade git+ssh://git@github.com:innvariant/ctnas.git
Usage examples
from ctnas.api import CTNASApi
api = CTNASApi()
print(api.get_datasets())
# Should give you:
# ['spheres-b8c16fd7', 'mnist', 'spheres-23aeba4d', 'spheres-bee36cd9',
# 'spheres-b758e9f4', 'spheres-0a19afe4', 'cifar10', 'spheres-6598864b']
from ctnas.api import CTNASApi
api = CTNASApi()
print(api.get_graph_properties().head())
Gives you s.th. like:
test_dev.py . graph_uuid num_nodes ... degree_var undir_ecc_var 0 6e302aa7-6208-42a9-b1e0-08ce6d9d83ba 6 ... 1.222222 0.222222 1 ecd9c934-90ae-460c-855f-90c0b24a4150 6 ... 0.666667 0.000000 2 d111e38f-3ed1-454f-9d0e-8ded0428c9d9 6 ... 1.000000 0.222222 3 d23cac47-047c-4ec6-aaa4-e393b2ebeccd 5 ... 0.640000 0.240000 4 c56bb6f8-a9ec-44db-8c17-37b166fb5b06 6 ... 0.888889 0.222222
[5 rows x 19 columns]
import networkx as nx
import matplotlib.pyplot as plt
from ctnas.api import CTNASApi
api = CTNASApi()
graph = api.get_graph("0a1ded7d-677a-41f7-9361-c7079c8a34a7")
nx.draw(graph)
plt.show()
Cite our work
@misc{stier2022ctnas,
title={CT-NAS: Analysis of Hidden Structural Priors for Neural Architecture Search},
author={Julian Stier and Michael Granitzer},
year={2022}
}
MinIO Policy
{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"s3:GetObject"
],
"Effect": "Allow",
"Resource": [
"arn:aws:s3:::homes/stier/ctnas/*"
]
}
]
}
{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"s3:GetObject"
],
"Effect": "Allow",
"Principal": {
"AWS": [
"*"
]
},
"Resource": [
"arn:aws:s3:::homes/stier/ctnas/*"
],
"Sid": ""
}
]
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ctnas-0.2.0.tar.gz
.
File metadata
- Download URL: ctnas-0.2.0.tar.gz
- Upload date:
- Size: 5.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.8.2 requests/2.27.1 setuptools/61.2.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a3bd411751b3f0a0b0a8de14d8af51e8699207e37263618a85a845e6386320a6 |
|
MD5 | 94b08b1c28ab3cee88d13d91b48ab2b8 |
|
BLAKE2b-256 | e776003953ff0735ebb126738f7f647ee5d6cc7e4aa07e52ec9fcea63651b984 |
File details
Details for the file ctnas-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: ctnas-0.2.0-py3-none-any.whl
- Upload date:
- Size: 7.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.8.2 requests/2.27.1 setuptools/61.2.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d283d52d65ac2ce84cf8168d862f29cc1a244941575c9f21004e4f0135b31ef3 |
|
MD5 | 0d86fcf3202603e835b9ff726732104c |
|
BLAKE2b-256 | 8e49b2b385b14f75dac6c4f0298a8fa53826a6c21400dd277a678eb865829e60 |