Skip to main content

Python bindings for the Transformer models implemented in C/C++ using GGML library.

Project description

C Transformers PyPI tests build

Python bindings for the Transformer models implemented in C/C++ using GGML library.

Supported Models

Models Model Type
GPT-2 gpt2
GPT-J, GPT4All-J gptj
GPT-NeoX, StableLM gpt_neox
LLaMA llama
MPT mpt
Dolly V2 dolly-v2
StarCoder starcoder

More models coming soon.

Installation

pip install ctransformers

For GPU (CUDA) support, set environment variable CT_CUBLAS=1 and install from source using:

CT_CUBLAS=1 pip install ctransformers --no-binary ctransformers
Show commands for Windows

On Windows PowerShell run:

$env:CT_CUBLAS=1
pip install ctransformers --no-binary ctransformers

On Windows Command Prompt run:

set CT_CUBLAS=1
pip install ctransformers --no-binary ctransformers

Usage

It provides a unified interface for all models:

from ctransformers import AutoModelForCausalLM

llm = AutoModelForCausalLM.from_pretrained('/path/to/ggml-gpt-2.bin', model_type='gpt2')

print(llm('AI is going to'))

Run in Google Colab

If you are getting illegal instruction error, try using lib='avx' or lib='basic':

llm = AutoModelForCausalLM.from_pretrained('/path/to/ggml-gpt-2.bin', model_type='gpt2', lib='avx')

It provides a generator interface for more control:

tokens = llm.tokenize('AI is going to')

for token in llm.generate(tokens):
    print(llm.detokenize(token))

It can be used with a custom or Hugging Face tokenizer:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('gpt2')

tokens = tokenizer.encode('AI is going to')

for token in llm.generate(tokens):
    print(tokenizer.decode(token))

It also provides access to the low-level C API. See Documentation section below.

Hugging Face Hub

It can be used with models hosted on the Hub:

llm = AutoModelForCausalLM.from_pretrained('marella/gpt-2-ggml')

If a model repo has multiple model files (.bin files), specify a model file using:

llm = AutoModelForCausalLM.from_pretrained('marella/gpt-2-ggml', model_file='ggml-model.bin')

It can be used with your own models uploaded on the Hub. For better user experience, upload only one model per repo.

To use it with your own model, add config.json file to your model repo specifying the model_type:

{
  "model_type": "gpt2"
}

You can also specify additional parameters under task_specific_params.text-generation.

See marella/gpt-2-ggml for a minimal example and marella/gpt-2-ggml-example for a full example.

LangChain

It is integrated into LangChain. See LangChain docs.

GPU

Note: Currently only LLaMA models have GPU support.

To run some of the model layers on GPU, set the gpu_layers parameter:

llm = AutoModelForCausalLM.from_pretrained('/path/to/ggml-llama.bin', model_type='llama', gpu_layers=50)

Run in Google Colab

Documentation

Config

Parameter Type Description Default
top_k int The top-k value to use for sampling. 40
top_p float The top-p value to use for sampling. 0.95
temperature float The temperature to use for sampling. 0.8
repetition_penalty float The repetition penalty to use for sampling. 1.1
last_n_tokens int The number of last tokens to use for repetition penalty. 64
seed int The seed value to use for sampling tokens. -1
max_new_tokens int The maximum number of new tokens to generate. 256
stop List[str] A list of sequences to stop generation when encountered. None
stream bool Whether to stream the generated text. False
reset bool Whether to reset the model state before generating text. True
batch_size int The batch size to use for evaluating tokens. 8
threads int The number of threads to use for evaluating tokens. -1
context_length int The maximum context length to use. -1
gpu_layers int The number of layers to run on GPU. 0

Note: Currently only LLaMA models support the context_length and gpu_layers parameters.

class AutoModelForCausalLM


classmethod AutoModelForCausalLM.from_pretrained

from_pretrained(
    model_path_or_repo_id: str,
    model_type: Optional[str] = None,
    model_file: Optional[str] = None,
    config: Optional[ctransformers.hub.AutoConfig] = None,
    lib: Optional[str] = None,
    **kwargs
)  LLM

Loads the language model from a local file or remote repo.

Args:

  • model_path_or_repo_id: The path to a model file or directory or the name of a Hugging Face Hub model repo.
  • model_type: The model type.
  • model_file: The name of the model file in repo or directory.
  • config: AutoConfig object.
  • lib: The path to a shared library or one of avx2, avx, basic.

Returns: LLM object.

class LLM

method LLM.__init__

__init__(
    model_path: str,
    model_type: str,
    config: Optional[ctransformers.llm.Config] = None,
    lib: Optional[str] = None
)

Loads the language model from a local file.

Args:

  • model_path: The path to a model file.
  • model_type: The model type.
  • config: Config object.
  • lib: The path to a shared library or one of avx2, avx, basic.

property LLM.config

The config object.


property LLM.embeddings

The input embeddings.


property LLM.logits

The unnormalized log probabilities.


property LLM.model_path

The path to the model file.


property LLM.model_type

The model type.


method LLM.detokenize

detokenize(tokens: Sequence[int])  str

Converts a list of tokens to text.

Args:

  • tokens: The list of tokens.

Returns: The combined text of all tokens.


method LLM.embed

embed(
    input: Union[str, Sequence[int]],
    batch_size: Optional[int] = None,
    threads: Optional[int] = None
)  List[float]

Computes embeddings for a text or list of tokens.

Note: Currently only LLaMA models support embeddings.

Args:

  • input: The input text or list of tokens to get embeddings for.
  • batch_size: The batch size to use for evaluating tokens. Default: 8
  • threads: The number of threads to use for evaluating tokens. Default: -1

Returns: The input embeddings.


method LLM.eval

eval(
    tokens: Sequence[int],
    batch_size: Optional[int] = None,
    threads: Optional[int] = None
)  None

Evaluates a list of tokens.

Args:

  • tokens: The list of tokens to evaluate.
  • batch_size: The batch size to use for evaluating tokens. Default: 8
  • threads: The number of threads to use for evaluating tokens. Default: -1

method LLM.generate

generate(
    tokens: Sequence[int],
    top_k: Optional[int] = None,
    top_p: Optional[float] = None,
    temperature: Optional[float] = None,
    repetition_penalty: Optional[float] = None,
    last_n_tokens: Optional[int] = None,
    seed: Optional[int] = None,
    batch_size: Optional[int] = None,
    threads: Optional[int] = None,
    reset: Optional[bool] = None
)  Generator[int, NoneType, NoneType]

Generates new tokens from a list of tokens.

Args:

  • tokens: The list of tokens to generate tokens from.
  • top_k: The top-k value to use for sampling. Default: 40
  • top_p: The top-p value to use for sampling. Default: 0.95
  • temperature: The temperature to use for sampling. Default: 0.8
  • repetition_penalty: The repetition penalty to use for sampling. Default: 1.1
  • last_n_tokens: The number of last tokens to use for repetition penalty. Default: 64
  • seed: The seed value to use for sampling tokens. Default: -1
  • batch_size: The batch size to use for evaluating tokens. Default: 8
  • threads: The number of threads to use for evaluating tokens. Default: -1
  • reset: Whether to reset the model state before generating text. Default: True

Returns: The generated tokens.


method LLM.is_eos_token

is_eos_token(token: int)  bool

Checks if a token is an end-of-sequence token.

Args:

  • token: The token to check.

Returns: True if the token is an end-of-sequence token else False.


method LLM.reset

reset()  None

Resets the model state.


method LLM.sample

sample(
    top_k: Optional[int] = None,
    top_p: Optional[float] = None,
    temperature: Optional[float] = None,
    repetition_penalty: Optional[float] = None,
    last_n_tokens: Optional[int] = None,
    seed: Optional[int] = None
)  int

Samples a token from the model.

Args:

  • top_k: The top-k value to use for sampling. Default: 40
  • top_p: The top-p value to use for sampling. Default: 0.95
  • temperature: The temperature to use for sampling. Default: 0.8
  • repetition_penalty: The repetition penalty to use for sampling. Default: 1.1
  • last_n_tokens: The number of last tokens to use for repetition penalty. Default: 64
  • seed: The seed value to use for sampling tokens. Default: -1

Returns: The sampled token.


method LLM.tokenize

tokenize(text: str)  List[int]

Converts a text into list of tokens.

Args:

  • text: The text to tokenize.

Returns: The list of tokens.


method LLM.__call__

__call__(
    prompt: str,
    max_new_tokens: Optional[int] = None,
    top_k: Optional[int] = None,
    top_p: Optional[float] = None,
    temperature: Optional[float] = None,
    repetition_penalty: Optional[float] = None,
    last_n_tokens: Optional[int] = None,
    seed: Optional[int] = None,
    batch_size: Optional[int] = None,
    threads: Optional[int] = None,
    stop: Optional[Sequence[str]] = None,
    stream: Optional[bool] = None,
    reset: Optional[bool] = None
)  Union[str, Generator[str, NoneType, NoneType]]

Generates text from a prompt.

Args:

  • prompt: The prompt to generate text from.
  • max_new_tokens: The maximum number of new tokens to generate. Default: 256
  • top_k: The top-k value to use for sampling. Default: 40
  • top_p: The top-p value to use for sampling. Default: 0.95
  • temperature: The temperature to use for sampling. Default: 0.8
  • repetition_penalty: The repetition penalty to use for sampling. Default: 1.1
  • last_n_tokens: The number of last tokens to use for repetition penalty. Default: 64
  • seed: The seed value to use for sampling tokens. Default: -1
  • batch_size: The batch size to use for evaluating tokens. Default: 8
  • threads: The number of threads to use for evaluating tokens. Default: -1
  • stop: A list of sequences to stop generation when encountered. Default: None
  • stream: Whether to stream the generated text. Default: False
  • reset: Whether to reset the model state before generating text. Default: True

Returns: The generated text.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ctransformers-0.2.3.tar.gz (144.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

ctransformers-0.2.3-py3-none-any.whl (3.2 MB view details)

Uploaded Python 3

File details

Details for the file ctransformers-0.2.3.tar.gz.

File metadata

  • Download URL: ctransformers-0.2.3.tar.gz
  • Upload date:
  • Size: 144.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for ctransformers-0.2.3.tar.gz
Algorithm Hash digest
SHA256 87fc9966b62fbdadb01b91b6373287e1af50e176b5dd409f4f2d1ff0fa9f7c99
MD5 d50e4b0efd15996e4fc44f57f73e69b6
BLAKE2b-256 843f05517b921f40e9b52f5c1edfd22f5dce933ee780313f7815a67262626a8f

See more details on using hashes here.

File details

Details for the file ctransformers-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: ctransformers-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for ctransformers-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 5043b0808839cd34b0c7d1b897b81ac7e3d4778674b6226aef18b622be4b75c9
MD5 302d7115833ef0c6959df4121884bd29
BLAKE2b-256 23c3a16909e0191d151e7159a3de6a3a7323f278812d53030faf75ba002ae347

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page