Library for post processing of MITgcm cubed sphere data
Project description
cubedsphere
Library for post processing of MITgcm cubed sphere data
Capabilities:
- regrid cubed sphere datasets using
xESMF
andxgcm
- open datasets created by the
mnc
package - open datasets using
xmitgcm
(needs current PR #98) - plot original cubed sphere data
- some more small utilities
- more to come...
Note:
Work in progress! This library is a collection of tools that I found useful to use for the interpretation of cubed sphere data.
Installation:
Create conda environment:
conda create -n mitgcm
Activate environment:
conda activate mitgcm
prepackaged installation:
Install cubedsphere:
conda install -c conda-forge xesmf esmpy xgcm matplotlib cubedsphere
Alternative: Installation of development version:
Clone this repo:
git clone https://github.com/AaronDavidSchneider/cubedsphere.git
cd cubedsphere
Install dependencies:
conda install -c conda-forge xesmf esmpy xgcm matplotlib
Install cubedsphere
:
pip install -e .
You can now import the cubedsphere
package from everywhere on your system
Example Usage
See examples/example.py
. The following plots have been created using data from tutorial_held_suarez_cs
.
import matplotlib.pyplot as plt
import cubedsphere as cs
import cubedsphere.const as c
# Specify directory where the output files can be found
outdir = "/Volumes/SCRATCH/sim_output/xmitgcm_test/nc_test"
# open Dataset
ds = cs.open_mnc_dataset(outdir, 276480)
# regrid dataset
regridder = cs.Regridder(ds, 5, 4, reuse_weights=False, filename="weights", concat_mode=False)
# Note: once weights were created, we can also reuse files by using reuse_weights=True (saves time).
ds_reg = regridder.regrid()
Only takes few seconds!
# do some basic plotting to demonstrate the dataset
# determine which timestep and Z to use:
isel_dict = {c.time:0, c.Z:0}
# do some basic plotting to demonstrate the dataset
fig = plt.figure(figsize=(8,6), constrained_layout=True)
ds_reg[c.T].isel(**isel_dict).plot(vmin=260,vmax=312, add_colorbar=False)
U, V = ds_reg["U"].isel(**isel_dict).values, ds_reg["V"].isel(**isel_dict).values
cs.overplot_wind(ds_reg, U, V)
plt.gca().set_aspect('equal')
plt.savefig("../docs/temp_reg.png")
plt.show()
# Now also plotting theta without regridding (on the original grid):
fig = plt.figure(figsize=(8,6), constrained_layout=True)
cs.plotCS(ds[c.T].isel(**isel_dict), ds, mask_size=5, vmin=260, vmax=312)
plt.gca().set_aspect('equal')
plt.savefig("../docs/temp_direct.png")
plt.show()
Tests with xmitgcm:
See examples/example_xmitgcm.py
Since we do not have the grid information, we need to fallback to the nearest_s2d
interpolation with concat mode. Concat mode means that instead of regridding each face individually and summing up the results, we first concatenate the ds along the X dimension and regrid on the flattened dataset afterwards.
We can fix this and keep using conservative regridding
by using the grid files from the mnc dataset:
In the future we will use xmitgcm.utils.get_grid_from_input
function instead.
ToDo:
Postprocessing:
- interface
xmitgcm
to enable the use of.meta
and.data
files -> added wrapper - how do we expand lon_b and lat_b from left to outer for xmitgcm wrapper? -> either nc file or soon with
xmitgcm.utils.get_grid_from_input
Testing:
- compare results with matlab scripts
Interface:
- which values should be hardcoded? -> done in const.py
- special tools needed for exorad?
future Ideas:
Regridding tools:
- use ESMPy as an alternative to xESMF (requires 6 processors)
Credits
Many of the methods come from: https://github.com/JiaweiZhuang/cubedsphere
I would especially like to thank @rabernat for providing xgcm
and @JiaweiZhuang for providing xESMF
.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cubedsphere-0.1.1.tar.gz
.
File metadata
- Download URL: cubedsphere-0.1.1.tar.gz
- Upload date:
- Size: 16.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.0 requests/2.24.0 setuptools/49.6.0.post20201009 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a576a829ed78ad582052db1fc774e1f3a760271dd3f0f97d8d41eb2d352d1a5 |
|
MD5 | ac7f1119851681cff25713af6cee51a1 |
|
BLAKE2b-256 | 38c12f19352547a23ffb7598862e17aa6e6502e346424973b2ace72b75b2d5ba |
File details
Details for the file cubedsphere-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: cubedsphere-0.1.1-py3-none-any.whl
- Upload date:
- Size: 16.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.0 requests/2.24.0 setuptools/49.6.0.post20201009 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c18e9b43c376d50d183bcf4ea7c9dae783c7b6b47a9d5b579f3509354695c823 |
|
MD5 | e6eda4a1a585adceb11664e06ecb868a |
|
BLAKE2b-256 | 55338ceb3a6bbd82b72f0409da63149a6cd506df51bfa333ad73e9ea0133400b |