A package used in DNN trainning in ATLAS analysis
Project description
Python package use cuda to normalize input variables using cuda package in ATLAS analysis
Function use to do Guassian Normalization: Mean: $$\mu_{i}=\frac{\sum x_{i}\times w_{i}}{\sum w_{i}}$$ Variance: $$\sigma_{i}=\frac{\sum (x_{i}-\mu_{i})^{2}\times w_{i}}{\frac{N-1}{N}\times\sum w_{i}}$$ Normalized input feature: $$\bar{x_{i}}=\frac{x_{i}-\mu_{i}}{\sigma_{i}}$$
Main function: guass_normal((1),(2),(3))
Input:
(1):Numpy array contain all input features you want to normalize. (2):Numpy array used to calculate each feature's mean and variance. (3):1-d Numpy array contains each events weight in (2)
(1) and (2) must have the same number of columns.
cuda_cut((1),(2),(3)): Used to calculate event yield after applying DNN cut.
Input: (1): 1-d numpy array include the variable you want to cut. (2): 1-d numpy array include event weight. (3): cut threshold
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for cuda_guass_normal-0.3-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63d0dff58d065a59a7c15d67bc7501fbcb887b7c17ce4c5a6d661d4ab63935ad |
|
MD5 | da4d0e64b6bf05ac8db334639da49dd4 |
|
BLAKE2b-256 | 39c21fd2880e9bd730f376476892405da7d401bbae7cf11af961f9b05b27da0f |