A package used in DNN trainning in ATLAS analysis
Project description
Python package use cuda to normalize input variables using cuda package in ATLAS analysis
Function use to do Guassian Normalization: Mean: $$\mu_{i}=\frac{\sum x_{i}\times w_{i}}{\sum w_{i}}$$ Variance: $$\sigma_{i}=\frac{\sum (x_{i}-\mu_{i})^{2}\times w_{i}}{\frac{N-1}{N}\times\sum w_{i}}$$ Normalized input feature: $$\bar{x_{i}}=\frac{x_{i}-\mu_{i}}{\sigma_{i}}$$
Main function: guass_normal((1),(2),(3))
Input:
(1):Numpy array contain all input features you want to normalize. (2):Numpy array used to calculate each feature's mean and variance. (3):1-d Numpy array contains each events weight in (2)
(1) and (2) must have the same number of columns.
cuda_cut((1),(2),(3)): Used to calculate event yield after applying DNN cut.
Input: (1): 1-d numpy array include the variable you want to cut. (2): 1-d numpy array include event weight. (3): cut threshold
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for cuda_guass_normal-0.9-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 93f37ab78b8208a2fcb7dde56f91cecade198952de9179f1b3368fde2aac061b |
|
MD5 | 3d6ba957af3d42538b8efc2e8439ea14 |
|
BLAKE2b-256 | 270a271ccde57b1e16c0bdd247c0f8478b95fc45de41cc6b520f17aca71ed7fb |