A package used in DNN trainning in ATLAS analysis
Project description
Python package use cuda to normalize input variables using cuda package in ATLAS analysis
Function use to do Guassian Normalization: Mean: $$\mu_{i}=\frac{\sum x_{i}\times w_{i}}{\sum w_{i}}$$ Variance: $$\sigma_{i}=\frac{\sum (x_{i}-\mu_{i})^{2}\times w_{i}}{\frac{N-1}{N}\times\sum w_{i}}$$ Normalized input feature: $$\bar{x_{i}}=\frac{x_{i}-\mu_{i}}{\sigma_{i}}$$
Main function: guass_normal((1),(2),(3))
Input:
(1):Numpy array contain all input features you want to normalize. (2):Numpy array used to calculate each feature's mean and variance. (3):1-d Numpy array contains each events weight in (2)
(1) and (2) must have the same number of columns.
cuda_cut((1),(2),(3)): Used to calculate event yield after applying DNN cut.
Input: (1): 1-d numpy array include the variable you want to cut. (2): 1-d numpy array include event weight. (3): cut threshold
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for cuda_guass_normal-1.6-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 41f497fbd450d85320f09193f434b43671b6f464c6ab904d168ecb02fc81b833 |
|
MD5 | aa5f29c98d773de26e87d5a162a07390 |
|
BLAKE2b-256 | aecd13d8febda0367fb65aa67677e1fa98ee986305054d54281cb0445f771dd2 |