Skip to main content

CUDA cffi bindings and helper classes

Project description

cuda4py
=========

Python cffi CUDA bindings and helper classes.

Tested with Python 2.7, Python 3.6 and PyPy on Linux with CUDA 8.0.

To compile kernel code written in C++, nvcc should be in PATH and
exported functions should be marked as extern "C"
(for Windows, cl.exe should be in PATH also).
Functions in plain PTX can be used without nvcc.

To use CUBLAS, libcublas.so (cublas64_65.dll) should be present.
To use CUDNN, libcudnn.so (cudnn64_65.dll) should be present.
To use CUFFT, libcufft.so (cufft64_65.dll) should be present.
To use CURAND, libcurand.so (curand64_65.dll) should be present.

Not all CUDA api is currently covered.

To install the module run:
```bash
python setup.py install
```
or just copy src/cuda4py to any place where python
interpreter will be able to find it.

To run the tests, execute:

for Python 2.7:
```bash
PYTHONPATH=src nosetests -w tests
```

for Python 3.4:
```bash
PYTHONPATH=src nosetests3 -w tests
```

for PyPy:
```bash
PYTHONPATH=src pypy -m nose -w tests
```

Example usage:

```python
import cuda4py as cu
import logging
import numpy


if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
ctx = cu.Devices().create_some_context()
module = cu.Module(
ctx, source=
"""
extern "C"
__global__ void test(const float *a, const float *b,
float *c, const float k) {
size_t i = blockDim.x * blockIdx.x + threadIdx.x;
c[i] = (a[i] + b[i]) * k;
}
""")
test = cu.Function(module, "test")
a = numpy.arange(1000000, dtype=numpy.float32)
b = numpy.arange(1000000, dtype=numpy.float32)
c = numpy.empty(1000000, dtype=numpy.float32)
k = numpy.array([0.5], dtype=numpy.float32)
a_buf = cu.MemAlloc(ctx, a)
b_buf = cu.MemAlloc(ctx, b)
c_buf = cu.MemAlloc(ctx, c)
test.set_args(a_buf, b_buf, c_buf, k)
test((a.size, 1, 1))
c_buf.to_host(c)
max_diff = numpy.fabs(c - (a + b) * k[0]).max()
logging.info("max_diff = %.6f", max_diff)
```

Released under Simplified BSD License.
Copyright (c) 2014, Samsung Electronics Co.,Ltd.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cuda4py-1.4.4.tar.gz (58.3 kB view details)

Uploaded Source

File details

Details for the file cuda4py-1.4.4.tar.gz.

File metadata

  • Download URL: cuda4py-1.4.4.tar.gz
  • Upload date:
  • Size: 58.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for cuda4py-1.4.4.tar.gz
Algorithm Hash digest
SHA256 7ae776d278349f9bfdf28c495ad0ed62101f9ad25355f8009c922677aabd0c66
MD5 a1d212162f6e014341745aa88ee73332
BLAKE2b-256 6bb44b9d59fd81a743bf44e698d5306212a8bb8b746e98937fab6b5b7ea92aef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page