Skip to main content

Real-time PyTorch Tensor Visualisation in CUDA, Eliminating CPU Transfer

Project description

Buy Me A Coffee Twitter Twitter PyPI version Downloads

image

cudacanvas : PyTorch Tensor Image Display in CUDA

(Real-time PyTorch Tensor Image Visualisation in CUDA, Eliminating CPU Transfer)

CudaCanvas is a simple Python module that eliminates CPU transfer for Pytorch tensors for displaying and rendering images in the training or evaluation phase, ideal for machine learning scientists and engineers.

Simplified version that directly displays the image without explicit window creation (cudacanvas >= v1.0.1)

import torch
import cudacanvas


#REPLACE THIS with you training loop
while (True):

    #REPLACE THIS with you training code and generation of data
    noise_image = torch.rand((4, 500, 500), device="cuda")

    #Visualise your data in real-time
    cudacanvas.im_show(noise_image)

    #OPTIONAL: Terminate training when the window is closed
    if cudacanvas.should_close():
        cudacanvas.clean_up()
        #end process if the window is closed
        break

You can visualise the latent of Stable Diffusion during sampling in real-time whilst waiting for the steps to finish

import warnings
warnings.filterwarnings("ignore")
from diffusers import StableDiffusionPipeline
import torch
import cudacanvas

def display_tensors(pipe, step, timestep, callback_kwargs):
    latents = callback_kwargs["latents"]

    with torch.no_grad():
        image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
        image = image - image.min()
        image = image / image.max()
    
    cudacanvas.im_show(image.squeeze(0))
    
    if cudacanvas.should_close():
        cudacanvas.clean_up()
        pipe._interrupt = True
    
    return callback_kwargs

pipeline = StableDiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1-base",
    torch_dtype=torch.float16,
    variant="fp16"
).to("cuda")

image = pipeline(
    prompt="A croissant shaped like a cute bear.",
    negative_prompt="Deformed, ugly, bad anatomy",
    callback_on_step_end=display_tensors,
    callback_on_step_end_tensor_inputs=["latents"],
).images[0]

cudacanvas.clean_up()

Installation

Before instllation make sure you have torch with cuda support already installed on your machine

We aligned pytorch and cuda version with our package the supporting packages are torch (2.0.1, 2.1.2 and 2.2.2) and (11.8 and 12.1)

Identify your current torch and cuda version

import torch
torch.__version__

Depending on your torch and cuda you can install the relevant cudacanvas package, for the latest one matching the latest pytorch package you can simply download the latest package

pip install cudacanvas

For other torch and cuda packages put the torch and cuda version after that cudacanvas version for example for 2.1.2+cu118 the Cudacanvas package you require is 1.0.1.post212118

pip install cudacanvas==1.0.1.post212118 --force-reinstall

Support

Also support my channel ☕ ☕ : https://www.buymeacoffee.com/outofai

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

cudacanvas-1.0.1.post250121-cp311-cp311-win_amd64.whl (99.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

cudacanvas-1.0.1.post250121-cp310-cp310-win_amd64.whl (98.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

cudacanvas-1.0.1.post250121-cp39-cp39-win_amd64.whl (98.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

File details

Details for the file cudacanvas-1.0.1.post250121-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for cudacanvas-1.0.1.post250121-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3a07cb59e254977d69fe9bb2b05a744fe705a9ec3519010baa012378234cf8b3
MD5 7dd5db87c7b99f13c26707e1d7b245b2
BLAKE2b-256 a9fac6f13e76b0e02bc562692467d9cf3a7a1cd066d8a1edbdce76f50bccd3d6

See more details on using hashes here.

File details

Details for the file cudacanvas-1.0.1.post250121-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cudacanvas-1.0.1.post250121-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e455708f0042f471d3a4e7bf7d402e827f014e4788809feffc0aafdfe1972246
MD5 0b8072693d5defc6a9c00f8de76100b6
BLAKE2b-256 c1779c639dd0a519db52513846f8dedf24272ae6d4d59f8eb72ec4cc5d7b5cc2

See more details on using hashes here.

File details

Details for the file cudacanvas-1.0.1.post250121-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for cudacanvas-1.0.1.post250121-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8ca36d64483c045661cf712464bf82a6b7b70cc3a7f62acfbcc8784ed549635a
MD5 0edbfb78fedc220639179b5c217ab2ac
BLAKE2b-256 c146453247b643c0997c0b34c9269f572ebc9f3597dd225eaad1bc51e02c4ec6

See more details on using hashes here.

File details

Details for the file cudacanvas-1.0.1.post250121-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cudacanvas-1.0.1.post250121-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26cc0a2113ae01b5631b58a1774448a2c45887c5b65993c21d6bbf51047ee871
MD5 748cbdc2410ca88a04b2ab22b2ef33f9
BLAKE2b-256 a6f66ffbe23c58bc58381377a1bc00fa99256b2e3dc02eb75bf14089e1f05c4c

See more details on using hashes here.

File details

Details for the file cudacanvas-1.0.1.post250121-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for cudacanvas-1.0.1.post250121-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9c8a37e7d77b801e053a24a7f583b3358135991edc10db1e58612e74581c239b
MD5 3e6868230274b4f8d3dfe1918a897d4f
BLAKE2b-256 095ac64894559f6b96682c901fe0980ccae5e85c89f5f5e9fb0906ea1bc439d9

See more details on using hashes here.

File details

Details for the file cudacanvas-1.0.1.post250121-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cudacanvas-1.0.1.post250121-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a15898cdf3050a189ae401616b073d353ef9c44ee6e7d72343927542c0af4382
MD5 044b9f3746878bde07877def743ccc12
BLAKE2b-256 6b51aa886f416d471bda5d1d38409b0dc44ff9476e4f5ff66f66a1a5b1d9d807

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page