Skip to main content

Accelerated libraries for Quantum Error Correction built on CUDA-Q

Project description

CUDA-Q QEC Library

CUDA-Q QEC is a high-performance quantum error correction library that leverages NVIDIA GPUs to accelerate classical decoding and processing of quantum error correction codes. The library provides optimized implementations of common QEC tasks including syndrome extraction, decoding, and logical operation tracking.

Note: CUDA-Q QEC is currently only supported on Linux operating systems using x86_64 processors. CUDA-Q QEC does not require a GPU to use, but some components are GPU-accelerated.

Features

  • Fast syndrome extraction and processing on GPUs
  • Common decoders for surface codes and other topological codes
  • Real-time decoding capabilities for quantum feedback
  • Integration with CUDA-Q quantum program execution

Getting Started

For detailed documentation, tutorials, and API reference, visit the CUDA-Q QEC Documentation.

License

CUDA-Q QEC is an open source project. The source code is available on GitHub and licensed under Apache License 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

cudaq_qec-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (550.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

cudaq_qec-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (551.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

cudaq_qec-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (549.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

File details

Details for the file cudaq_qec-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cudaq_qec-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a082768b4c91f57d2dc43da8166ba303035bb94396d875e5991de23bc66812f6
MD5 c9cff1b3af9bb2e52886f56ec8affa2a
BLAKE2b-256 ad634d546cd0be4e07c6fbc29b6a795cf6c01993695987dc34294763edbea95f

See more details on using hashes here.

File details

Details for the file cudaq_qec-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cudaq_qec-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 492caf28773729dbb0de2d2ea00b8a1f6290828f806f8c6a4d6d6c312719d190
MD5 97df867ac17162208499fc602ba757bb
BLAKE2b-256 f3d1a1191b1411865cc21d43c5a0c6d60efcfc6a9dc8cb52ad34a372aef9a76e

See more details on using hashes here.

File details

Details for the file cudaq_qec-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cudaq_qec-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 90e02ac4a286d306d1d918bd0cccc03c398c0b85f3afb0cc4dedb3f0b67642ae
MD5 36f7b3c05a51f6cadc59da7cf6b8d029
BLAKE2b-256 46528afab3736b53e0cb4faef8f2815ef46dbcf5a61f147d94158e4feac0e586

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page