Skip to main content

Accelerated libraries for quantum-classical solvers built on CUDA-Q

Project description

CUDA-Q Solvers Library

CUDA-Q Solvers provides GPU-accelerated implementations of common quantum-classical hybrid algorithms and numerical routines frequently used in quantum computing applications. The library is designed to work seamlessly with CUDA-Q quantum programs.

Note: CUDA-Q Solvers is currently only supported on Linux operating systems using x86_64 processors. CUDA-Q Solvers does not require a GPU to use, but some components are GPU-accelerated.

Note: CUDA-Q Solvers will require the presence of libgfortran, which is not distributed with the Python wheel, for provided classical optimizers. If libgfortran is not installed, you will need to install it via your distribution's package manager. On debian based systems, you can install this with apt-get install gfortran.

Features

  • Variational quantum eigensolvers (VQE)
  • ADAPT-VQE
  • Quantum approximate optimization algorithm (QAOA)
  • Hamiltonian simulation routines

Getting Started

For detailed documentation, tutorials, and API reference, visit the CUDA-Q Solvers Documentation.

License

CUDA-Q Solvers is an open source project. The source code is available on GitHub and licensed under Apache License 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

cudaq_solvers-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

cudaq_solvers-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

cudaq_solvers-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

File details

Details for the file cudaq_solvers-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cudaq_solvers-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 663acd5b4c4042953b0c8884fb86f299428418c34ceef355d9a9ec1e1e103a98
MD5 ca7d9055b5d84f52c0c9b334bacd08c0
BLAKE2b-256 6b8a51c6cbc0a48605b82b1409fdca66e90ce59bee381105aa38941844e515c3

See more details on using hashes here.

File details

Details for the file cudaq_solvers-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cudaq_solvers-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a906e40fac744df278725733d75453fd0c410b86976a924588c99d08562adcbd
MD5 610f9ccda7404fc4ed18a20768689862
BLAKE2b-256 f5872c0fdbc77f6ed8cb9b0974727a1a5b97b17e7e23a7490d4d6606444e2960

See more details on using hashes here.

File details

Details for the file cudaq_solvers-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cudaq_solvers-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6e4b5b1f32c3ac40442e21dd14c14c5e8593f574e62ebf38f06e0ffd3c912f08
MD5 0c3eaa33eee95aa15c97e21c7de75b6f
BLAKE2b-256 083bdc19c0d888c28095db40d9b01f7f428d5628ce4fcacc61c0d15ea49c8b3e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page