Skip to main content

cuDF - GPU Dataframe

Project description

 cuDF - GPU DataFrames

📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see here!

cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data. cuDF leverages libcudf, a blazing-fast C++/CUDA dataframe library and the Apache Arrow columnar format to provide a GPU-accelerated pandas API.

You can import cudf directly and use it like pandas:

import cudf

tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100

# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())

Or, you can use cuDF as a no-code-change accelerator for pandas, using cudf.pandas. cudf.pandas supports 100% of the pandas API, utilizing cuDF for supported operations and falling back to pandas when needed:

%load_ext cudf.pandas  # pandas operations now use the GPU!

import pandas as pd

tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100

# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())

Resources

See the RAPIDS install page for the most up-to-date information and commands for installing cuDF and other RAPIDS packages.

Installation

CUDA/GPU requirements

  • CUDA 11.2+
  • NVIDIA driver 450.80.02+
  • Volta architecture or better (Compute Capability >=7.0)

Pip

cuDF can be installed via pip from the NVIDIA Python Package Index. Be sure to select the appropriate cuDF package depending on the major version of CUDA available in your environment:

For CUDA 11.x:

pip install --extra-index-url=https://pypi.nvidia.com cudf-cu11

For CUDA 12.x:

pip install --extra-index-url=https://pypi.nvidia.com cudf-cu12

Conda

cuDF can be installed with conda (via miniforge) from the rapidsai channel:

conda install -c rapidsai -c conda-forge -c nvidia \
    cudf=25.06 python=3.13 cuda-version=12.8

We also provide nightly Conda packages built from the HEAD of our latest development branch.

Note: cuDF is supported only on Linux, and with Python versions 3.10 and later.

See the RAPIDS installation guide for more OS and version info.

Build/Install from Source

See build instructions.

Contributing

Please see our guide for contributing to cuDF.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

cudf_cu12-25.6.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cudf_cu12-25.6.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cudf_cu12-25.6.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cudf_cu12-25.6.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cudf_cu12-25.6.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cudf_cu12-25.6.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cudf_cu12-25.6.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cudf_cu12-25.6.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

File details

Details for the file cudf_cu12-25.6.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cudf_cu12-25.6.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b7d8ede401ca779e804d67292b01a1f6a1a9e720810c3174f041f9ae15788405
MD5 4156f55b143951f46e923d7bac9bd71f
BLAKE2b-256 bfcc67d26b01c6170dc8972d48366553949d69f48c236c897ad8d5bf9bd3b9f1

See more details on using hashes here.

File details

Details for the file cudf_cu12-25.6.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cudf_cu12-25.6.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3c33faf151ed98bf40716d01446444a0c2deaf456bdd69843d1da85f197287f6
MD5 8edf82fb53897aaf516b50666c769caf
BLAKE2b-256 34423973b1a1561a0d919634dda5d8cf36d86f1d0e58ba2646ab5cc7a70aa4ff

See more details on using hashes here.

File details

Details for the file cudf_cu12-25.6.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cudf_cu12-25.6.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f5651cf2bce7ce877506989a49edf936ebf021a6c8c8f0ef1ac24af06e24e6a1
MD5 fda60439dcf3584c94fb9eacd4744869
BLAKE2b-256 386b159e4e10d792f5097765fcdd4300064917b40f68f211c72c0ef2f54b8487

See more details on using hashes here.

File details

Details for the file cudf_cu12-25.6.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cudf_cu12-25.6.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8728be652c926a9f3116bc89dc528e3322a6e3e36f93f75bbff36242e058d227
MD5 0f49ed3e54ec3eb4677dea9fb42f1e0e
BLAKE2b-256 752fc1f14c9fc50412135a80c7181fb5a66c29e771c90b0091c2c6ebfee40239

See more details on using hashes here.

File details

Details for the file cudf_cu12-25.6.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cudf_cu12-25.6.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f8b3b29a71b6f25fa89bad2a0cfadfc3d36aa63edca93b64b1e868ded3c71a21
MD5 5ef73c66717d3dbbcd9fa2ae2016debf
BLAKE2b-256 969c819266f30be1ffe05e99c3cad1158f026f70855edd11943b4e5335f90bbd

See more details on using hashes here.

File details

Details for the file cudf_cu12-25.6.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cudf_cu12-25.6.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1ac5f583ff25f53d7bd7ecd0bfd6de2576370756eb5ff7776e96ca30d0a6f7e9
MD5 6779a4368902aee8c8e64525716a698f
BLAKE2b-256 18744995e26e6a48d7f272b6174018401ab51d0711043e1dd592c53d3f1d8bcf

See more details on using hashes here.

File details

Details for the file cudf_cu12-25.6.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cudf_cu12-25.6.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ec902aeafafc2bbfca759823a0ac4c1af524ad287351d0bd2f0ccee065227736
MD5 a5da58c33a02e0ea9ebeaf7e69a9d887
BLAKE2b-256 401fb139637a16c6b4f7bae36b6cf641d6646280de5a6776e1be92cd4333fb7c

See more details on using hashes here.

File details

Details for the file cudf_cu12-25.6.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cudf_cu12-25.6.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b28a5d2df85c70164a193a59488c96136d075a7a3b2e57707e3301386ff80586
MD5 b8a72ac0de9775d90cc22c2c5d90273a
BLAKE2b-256 3b685ed0f79b9b0b243573fca0976015eb0a6ac2f1faaec1f54eb535cf3ac199

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page