Skip to main content

Modules for LD computing, liftover and region extraction

Project description

Scalable pipeline for computing LD matrix in big sample phenotype

4 modules

  • Genodata
  • Sumstats
  • Liftover
  • LDmatrix

Install

pip install cugg

How to use

lf = Liftover('hg38','hg19')
vcf ='/home/yh3455/Github/SEQLinkage/MWE/small_sample_ii_coding.vcf.gz'
lf.vcf_liftover(vcf)
!which python
/home/yh3455/miniconda3/bin/python
region = [5,272741,1213528-900000]
geno_path = 'MWE_region_extraction/ukb23156_c5.merged.filtered.5_272741_1213528.bed'
sumstats_path = 'MWE_region_extraction/090321_UKBB_Hearing_aid_f3393_expandedwhite_6436cases_96601ctrl_PC1_2_f3393.regenie.snp_stats'
pheno_path = None
unr_path = 'MWE_region_extraction/UKB_genotypedatadownloaded083019.090221_sample_variant_qc_final_callrate90.filtered.extracted.white_europeans.filtered.092821_ldprun_unrelated.filtered.prune.txt'
imp_geno_path = 'MWE_region_extraction/ukb_imp_chr5_v3_05_272856_1213643.bgen'
imp_sumstats_path = 'MWE_region_extraction/100521_UKBB_Hearing_aid_f3393_expandedwhite_15601cases_237318ctrl_500k_PC1_PC2_f3393.regenie.snp_stats.gz'
imp_ref = 'hg19'
bgen_sample_path = 'MWE_region_extraction/ukb_imp_chr5_v3_05_272856_1213643.sample'
output_sumstats = 'test.snp_stats.gz'
output_LD = 'test_corr.csv.gz'

#main(region,geno_path,sumstats_path,pheno_path,unr_path,imp_geno_path,imp_sumstats_path,imp_ref,output_sumstats,output_LD)
    def main(region,geno_path,sumstats_path,pheno_path,unr_path,imp_geno_path,imp_sumstats_path,imp_ref,output_sumstats,output_LD,bgen_sample_path):

        print('1. Preprocess sumstats (regenie format) and extract it from a region')
        if pheno_path is not None:
            # Load phenotype file
            pheno = pd.read_csv(pheno_path, header=0, delim_whitespace=True, quotechar='"')
        if unr_path is not None:
            # Load unrelated sample file
            unr = pd.read_csv(unr_path, header=0, delim_whitespace=True, quotechar='"')  
        # Load the file of summary statistics and standardize it.
        exome_sumstats = Sumstat(sumstats_path)
        exome_geno = Genodata(geno_path,bgen_sample_path)

        print('1.1. Region extraction')
        exome_sumstats.extractbyregion(region)
        exome_geno.extractbyregion(region)
        exome_sumstats.match_ss(exome_geno.bim)
        exome_geno.geno_in_stat(exome_sumstats.ss)

        if imp_geno_path is not None:
            #two genotype data
            imput_sumstats = Sumstat(imp_sumstats_path)
            imput_geno = Genodata(imp_geno_path,bgen_sample_path)

            if imp_ref is None:
                imput_sumstats.extractbyregion(region)
                imput_geno.extractbyregion(region)
                imput_sumstats.match_ss(imput_geno.bim)
                imput_geno.geno_in_stat(imput_sumstats.ss)
            else:
                print('1.2. LiftOver the region')
                hg38toimpref = Liftover('hg38',imp_ref)
                imp_region = hg38toimpref.region_liftover(region)
                imput_sumstats.extractbyregion(imp_region)
                imput_geno.extractbyregion(imp_region)
                imput_sumstats.match_ss(imput_geno.bim)
                imput_geno.geno_in_stat(imput_sumstats.ss)

                print('1.3. Regional SNPs Liftover')
                impreftohg38 = Liftover(imp_ref,'hg38') #oppsite with hg38toimpref
                imput_geno.bim = impreftohg38.bim_liftover(imput_geno.bim)
                imput_sumstats.ss.POS = list(imput_geno.bim.pos)
                imput_sumstats.ss.SNP = list(imput_geno.bim.snp)

            print('1.1.1 Get exome unique sumstats and geno and Combine sumstats')
            snp_match = compare_snps(exome_sumstats.ss,imput_sumstats.ss)
            exome_sumstats.ss = exome_sumstats.ss.loc[snp_match.qidx[snp_match.exact==False].drop_duplicates()] #remove by exact match. can be improved.
            exome_sumstats.extractbyvariants(imput_sumstats.ss.SNP,notin=True)
            exome_geno.geno_in_stat(exome_sumstats.ss)
            sumstats = pd.concat([exome_sumstats.ss,imput_sumstats.ss])
        else:
            #one genotype data
            sumstats = exome_sumstats

        print('2. Remove relative samples')
        if unr_path is not None:
            exome_geno.geno_in_unr(unr)
            if imp_geno_path is not None:
                imput_geno.geno_in_unr(unr)
        else:
            print('Warning:There is no file of relative sample. All sample are included in computing LD matrix')

        if pheno_path is not None:
            print('Warning: This function has been implementd yet.')
            pass #sld and pld

        print('3. Calculate LD matrix')
        if imp_geno_path is None:
            cor_da = geno_corr(exome_geno.bed.T)
        else:
            xx = geno_corr(exome_geno.bed.T)
            yy = geno_corr(imput_geno.bed.T,step=500)

            imput_fam = imput_geno.fam.copy()
            imput_fam.index = list(imput_fam.iid.astype(str))
            imput_fam['i'] = list(range(imput_fam.shape[0]))
            imput_fam_comm = imput_fam.loc[list(exome_geno.fam.iid.astype(str))]
            imput_geno.extractbyidx(list(imput_fam_comm.i),row=False)
            xy = geno_corr(exome_geno.bed.T,imput_geno.bed.T,step=500)
            cor_da = da.concatenate([da.concatenate([xx,xy],axis=1),da.concatenate([xy.T,yy],axis=1)],axis=0)

        print('4. Output sumstats and LD matrix')
        index = list(sumstats.SNP.apply(shorten_id))
        sumstats.SNP = index
        sumstats.index = list(range(sumstats.shape[0]))
        sumstats.to_csv(output_sumstats, sep = "\t", header = True, index = False,compression='gzip')

        corr = cor_da.compute()
        np.fill_diagonal(corr, 1)
        corr = pd.DataFrame(corr, columns=index)
        corr.to_csv(output_LD, sep = "\t", header = True, index = False,compression='gzip')
main(region,geno_path,sumstats_path,pheno_path,unr_path,imp_geno_path,imp_sumstats_path,imp_ref,output_sumstats,output_LD,bgen_sample_path)
1. Preprocess sumstats (regenie format) and extract it from a region
1.1. Region extraction
this region [5, 272741, 313528] has 498 SNPs
Total SNPs 119 . Flip SNPs 118


/home/yh3455/miniconda3/lib/python3.8/site-packages/pandas/core/generic.py:5516: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  self[name] = value


1.2. LiftOver the region
this region (5, 272856, 313643) has 1736 SNPs
Total SNPs 385 . Flip SNPs 0
1.3. Regional SNPs Liftover
1.1.1 Get exome unique sumstats and geno and Combine sumstats
keep   exact  flip   reverse  both   complement
False  False  False  False    False  False         106
True   False  True   False    False  False          12
       True   False  False    False  False           1
dtype: int64
2. Remove relative samples
3. Calculate LD matrix


/mnt/mfs/statgen/yin/Github/LDtools/LDtools/ldmatrix.py:29: RuntimeWarning: invalid value encountered in true_divide
  geno_i = (geno_i - np.nanmean(geno_i,axis=0)[None,:])/np.nanstd(geno_i,axis=0)[None,:]
/mnt/mfs/statgen/yin/Github/LDtools/LDtools/genodata.py:74: PerformanceWarning: Slicing with an out-of-order index is generating 22098 times more chunks
  geno = geno[:,idx]
/mnt/mfs/statgen/yin/Github/LDtools/LDtools/ldmatrix.py:67: RuntimeWarning: invalid value encountered in true_divide
  geno_i = (geno_i - np.nanmean(geno_i,axis=0)[None,:])/np.nanstd(geno_i,axis=0)[None,:]


4. Output sumstats and LD matrix

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cugg-0.0.17.tar.gz (154.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

cugg-0.0.17-py3-none-any.whl (31.5 kB view details)

Uploaded Python 3

File details

Details for the file cugg-0.0.17.tar.gz.

File metadata

  • Download URL: cugg-0.0.17.tar.gz
  • Upload date:
  • Size: 154.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.8.5

File hashes

Hashes for cugg-0.0.17.tar.gz
Algorithm Hash digest
SHA256 bbb776842c25b93ce51528925ea43c22f8fc025667ea05474e14fc2d5af3e487
MD5 958fdc002df44db46f29853f1e5b6aad
BLAKE2b-256 334e43eb55f3fb5f67690c03b7a0b530dc4b229fe688a79dfec820d8e63915ac

See more details on using hashes here.

File details

Details for the file cugg-0.0.17-py3-none-any.whl.

File metadata

  • Download URL: cugg-0.0.17-py3-none-any.whl
  • Upload date:
  • Size: 31.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.8.5

File hashes

Hashes for cugg-0.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 7b97f0f22d54677d6815b39477c18c1d7413d7ec9a64115c1a92ae1a7c225836
MD5 c418550e05ca00fe123c1a44155b820f
BLAKE2b-256 06fe8d0e281759499fc973a49d3e236ab3b270c35480451f23918c9c4c313e73

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page