Skip to main content

No project description provided

Project description

Install

git clone https://github.com/stdogpkg/cukuramoto/ && cd cukuramoto && python setup.py install

Running

import igraph as ig
import numpy as np
from stdog.utils.misc import ig2sparse 

block_size=1024 # gpu parameter

num_couplings = 40
N = 10000

G = ig.Graph.Erdos_Renyi(N, 3/N)
adj = ig2sparse(G)
adj = adj.tocsr()
ptr, indices = adj.indptr, adj.indices


couplings = np.linspace(0, 4, num_couplings).astype("float32")
omegas = np.tan(( np.arange(1,N+1)*np.pi)/N - ((N+1.)*np.pi)/(2.0*N)  ).astype("float32")
phases = np.random.uniform(-np.pi, np.pi, int(num_couplings*N)).astype("float32")
import cukuramoto

dt = 0.1
num_temps = 100
simulation = cukuramoto.Heuns(
    N, block_size, omegas, phases, couplings, 
    indices, ptr)

simulation.heuns(num_temps, dt)
order_parameter_list = simulation.get_order_parameter(num_temps, dt)
order_parameter_list = order_parameter_list.reshape(num_couplings, num_temps)
    
r = np.mean(order_parameter_list, axis=1)
stdr = np.std(order_parameter_list, axis=1)
   
import matplotlib.pyplot as plt
plt.ion()
fig, ax1 = plt.subplots()
ax1.plot(couplings,r,'.-')
ax2 = ax1.twinx()
ax2.plot(couplings,stdr,'r.-')
plt.show()

Project details


Release history Release notifications

This version

1.0.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for cukuramoto, version 1.0.0
Filename, size File type Python version Upload date Hashes
Filename, size cukuramoto-1.0.0.tar.gz (24.5 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page