CUda Matrix Multiply library
Project description
cumm
CUda Matrix Multiply library.
Install
Prebuilt
We offer python 3.6-3.10 and cuda 10.2/11.1/11.4 prebuilt binaries for linux (manylinux).
We offer python 3.7-3.10 and cuda 10.2/11.1/11.4 prebuilt binaries for windows 10/11.
We will offer prebuilts for CUDA versions supported by latest pytorch release. For example, pytorch 1.9 support cuda 10.2 and 11.1, so we support them too.
pip install cumm-cu102
for CUDA 10.2
pip install cumm-cu111
for CUDA 11.1
pip install cumm-cu114
for CUDA 11.4
Build from source
Linux
- install build-essential, install CUDA
- run
export CUMM_DISABLE_JIT="1"
- run
python setup.py install
/pip install -e .
/python setup.py bdist_wheel
+pip install dists/xxx.whl
Windows 10/11
- install visual studio 2019 or newer. make sure C++ development package is installed. install CUDA
- set powershell script execution policy
- start a new powershell, run
tools/msvc_setup.ps1
- run
$Env:CUMM_DISABLE_JIT = "1"
- run
python setup.py install
/pip install -e .
/python setup.py bdist_wheel
+pip install dists/xxx.whl
Note
The work is done when the author is an employee at Tusimple.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distributions
Close
Hashes for cumm_cu111-0.1.10-cp310-cp310-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 83c72db2bbf05311873e837c34231e2a5bc1db04905f4d35f716d1fa231d0574 |
|
MD5 | 76c89d22e1bcf8d3ff099af5c8336fea |
|
BLAKE2b-256 | 3b203bd1355e2db26d4bf32e46da5b2ef5909978d4aba92bf2c04fdbb004a841 |
Close
Hashes for cumm_cu111-0.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2e4a783ea1b785c9ce9247d370480a1c2cd286140847c837dd8c77c864047868 |
|
MD5 | 6e589d0126c216ee04b3c9a1e9828ba7 |
|
BLAKE2b-256 | 4bd650ae04366a9e0206c1db097b2690fe22c59f074e545ac2e1f1fd9ff75712 |
Close
Hashes for cumm_cu111-0.1.10-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a065c509fa0da2e6144d7123586787047561cc1aa443b1ea6f7669a00d6cdb63 |
|
MD5 | 99bea4964366a3189230824b0dccc874 |
|
BLAKE2b-256 | 009db337c7e504c81651cebeea24b510b1a46aa40377d4676e9e58088daab9f1 |
Close
Hashes for cumm_cu111-0.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c62c4064932bce9c9abacb0c9ffc76cb8d08dd517b66671e30b12f256e36af7b |
|
MD5 | 586b50ecc43eb8d950234a458653c47d |
|
BLAKE2b-256 | 20b54c59adb15c9587f57794203586f19e2cfb9820b7aaf99407bc36074fce0a |
Close
Hashes for cumm_cu111-0.1.10-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ca89c62b767fdc8501d4ddb0a76c7fdbd2c7edbd40a2726733c188fe2b840d6e |
|
MD5 | d67f76b80f24458994e8d0c6045e4420 |
|
BLAKE2b-256 | 348df2eaa96a90977efd6d4d2e289456a2ad549f6f79c7cb692a0e14a8ab48ee |
Close
Hashes for cumm_cu111-0.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 781af63c79bdd3d2602e1f43615aa0a9bfd441553e07c3c47f76be6392585609 |
|
MD5 | e48b727a2c53c9d13a96dc850fcb375f |
|
BLAKE2b-256 | d201c3703e813be3a21c7d09894d603d1aaa69c79a1777ad07d4675ca9ded3d3 |
Close
Hashes for cumm_cu111-0.1.10-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ebf4648b36946a3220c610da9cb3f547d78d6747593531dd84befb12721df697 |
|
MD5 | 647e10a9f118a621ba0c3ff7eab7b15b |
|
BLAKE2b-256 | 32c21ffdd6175d5a378fbf311d451e54ea39f8d303bcff784f9437d79196637d |
Close
Hashes for cumm_cu111-0.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b62252f8e2514ed91dea3a020509b1fec570f851050c48df38608746973bf49 |
|
MD5 | 2f2e2527f5e14e06d439359b3ca9869e |
|
BLAKE2b-256 | 1369f72e9a7066c6f4c0d312ac5ba1fe375a652cc566e1364261a7cea0b6c08f |
Close
Hashes for cumm_cu111-0.1.10-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6647a8704069b3a4a3e1cb179a263ba93becadc36232f589056431678887610e |
|
MD5 | 12747aedf55f1a50296cfd1271df7c48 |
|
BLAKE2b-256 | fe14e94b861d67da721a7c1978df746fb3004908ddf0dff2de597f61e3093404 |
Close
Hashes for cumm_cu111-0.1.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2f6d9c721e1a29b17b478551ba15cdb70a73b4269f33762bc5940131849139f |
|
MD5 | 28871151e171887c1b4b1dec92cb902d |
|
BLAKE2b-256 | 1aea79040504002f09d1152f8ce0031230308e4417b089e17b3ef8479d64c5a4 |