Skip to main content

CUda Matrix Multiply library

Project description

cumm

CUda Matrix Multiply library.

Build Status

cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I develop pccm, use python as meta programming language, to replace c++ template meta programming. Now pccm become a foundational framework of cumm and my other c++ project such as spconv. cumm also contains a python asyncio-based gemm simulator that share same meta program with CUDA code, enable gemm visualization and easy debug experience.

BREAKING CHANGES

  • 0.3.1: tv::DType enum value changed, this will affect all binary code of tv::Tensor user. you must recompile all code if upgrade to cumm >= 0.3.1.

News

Install

Prebuilt

We offer python 3.7-3.11 and cuda 10.2/11.3/11.4/11.7/12.0 prebuilt binaries for linux (manylinux).

We offer python 3.7-3.11 and cuda 10.2/11.3/11.4/11.7/12.0 prebuilt binaries for windows 10/11.

pip install cumm for CPU-only

pip install cumm-cu102 for CUDA 10.2

pip install cumm-cu113 for CUDA 11.3

pip install cumm-cu114 for CUDA 11.4

pip install cumm-cu117 for CUDA 11.7

pip install cumm-cu120 for CUDA 12.0

Build from source for development (JIT, recommend for develop)

WARNING Use code in tags!!! code in main branch may contain bugs.

The c++ code will be built automatically when you change c++ code in project.

Linux

  1. uninstall cumm installed by pip. you must ensure no "cumm" exists in pip list | grep cumm
  2. install build-essential, install CUDA
  3. git clone https://github.com/FindDefinition/cumm, cd ./cumm, git checkout tags/<tag_name>, pip install -e .
  4. in python, import cumm and wait for build finish.

Windows

  1. uninstall spconv and cumm installed by pip. you must ensure no "cumm" exists in pip list | grep cumm
  2. install visual studio 2019 or newer. make sure C++ development component is installed. install CUDA
  3. set powershell script execution policy
  4. start a new powershell, run tools/msvc_setup.ps1
  5. git clone https://github.com/FindDefinition/cumm, cd ./cumm, git checkout tags/<tag_name>, pip install -e .
  6. in python, import cumm and wait for build finish.

Build wheel from source

WARNING Use code in tags!!! code in main branch may contain bugs.

WARNING: If CUMM_CUDA_VERSION is set with a CUDA version, following steps will create a wheel named "cumm-cuxxx", not "cumm", this means you must use cumm-cuxxx in dependency of your project which depend on cumm, not cumm. If CUMM_CUDA_VERSION isn't set, cumm will always built with CUDA, so the CUDA must exists in your system. The wheel name will be cumm even if it is built with cuda.

Linux

It's recommend to build Linux packages in official build docker. Build with CUDA support don't need a real GPU.

Build in Official Docker
  1. select a cuda version. available: CUDA 11.1, 11.3, 11.4, 11.5, 12.0
  2. (Example for CUDA 11.4) git clone https://github.com/FindDefinition/cumm, cd ./cumm, docker run --rm -e PLAT=manylinux2014_x86_64 -e CUMM_CUDA_VERSION=114 -v `pwd`:/io scrin/manylinux2014-cuda:cu114-devel-1.0.0 bash -c "source /etc/bashrc && /io/tools/build-wheels.sh"
Build in your environment
  1. install build-essential, install CUDA
  2. set env for installed cuda version. for example, export CUMM_CUDA_VERSION="11.4". If you want to build CPU-only, run export CUMM_CUDA_VERSION="". If CUMM_CUDA_VERSION isn't set, you need to ensure cuda libraries are inside OS search path, and the built wheel name will be cumm, otherwise cumm-cuxxx
  3. run export CUMM_DISABLE_JIT="1"
  4. run python setup.py bdist_wheel+pip install dists/xxx.whl

Windows 10/11

  1. install visual studio 2019 or newer. make sure C++ development package is installed. install CUDA
  2. set powershell script execution policy
  3. start a new powershell, run tools/msvc_setup.ps1
  4. set env for installed cuda version. for example, $Env:CUMM_CUDA_VERSION = "11.4". If you want to build CPU-only, run $Env:CUMM_CUDA_VERSION = "". . If CUMM_CUDA_VERSION isn't set, you need to ensure cuda libraries are inside OS search path, and the built wheel name will be cumm, otherwise cumm-cuxxx
  5. run $Env:CUMM_DISABLE_JIT = "1"
  6. run python setup.py bdist_wheel+pip install dists/xxx.whl

Contributers

Note

The work is done when the author is an employee at Tusimple.

LICENSE

Apache 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

cumm_cu113-0.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

cumm_cu113-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

cumm_cu113-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

cumm_cu113-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

cumm_cu113-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file cumm_cu113-0.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cumm_cu113-0.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c80640fbcfd620d409c80ec5ca2cc60bdc3a5842d680246a679d888273d7780
MD5 ccdb1e61f23b8d6614e157e9fb205dd3
BLAKE2b-256 316209b1488dc2661e0cc14551ca7522e6c41845aa54e381598e0d8019d3c432

See more details on using hashes here.

Provenance

File details

Details for the file cumm_cu113-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cumm_cu113-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86e7817440a839f8199b4edaaea29bcd5f2dea772cfc56bfcafaef3e89ba9ce5
MD5 2040132463320f2da5c2a2481ef25ce6
BLAKE2b-256 8718667277c450ce4db962cc694ed7284506179cd2fa0450f4dec8f72c85ce83

See more details on using hashes here.

Provenance

File details

Details for the file cumm_cu113-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cumm_cu113-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 52af682bc8c12f8d7d9cc42bf81852b290e8fd71df590f488d230d46c5d59eb4
MD5 57b73bf9311e6145c8eb360d6a1b0786
BLAKE2b-256 3106dc6587e48bb14f0c743b817a40c0f822d9fe01128621f5f8d78030e97570

See more details on using hashes here.

Provenance

File details

Details for the file cumm_cu113-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cumm_cu113-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10d2da822c438dcd9e8387fc4c64d309c18e7568179eed2c7051accd6f06615d
MD5 229a3b9653074254b1a7a31ad1b78040
BLAKE2b-256 afd6854f23867e1ac5324c5729bbaf9a36a2d96421b33ed25fe9a70530af79de

See more details on using hashes here.

Provenance

File details

Details for the file cumm_cu113-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cumm_cu113-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e6f16add782685361afe6176e9448bb77f96c34549092fdd1bc9fbbb1b12d42
MD5 d91d4c3398766ace91dd5683e4569972
BLAKE2b-256 85464ed0d029f0dcaba32ca4854b0576bd5f93d4b01698c8b6ac6497f2349066

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page