Skip to main content

CUda Matrix Multiply library

Project description

cumm

CUda Matrix Multiply library.

Build Status

cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I develop pccm, use python as meta programming language, to replace c++ template meta programming. Now pccm become a foundational framework of cumm and my other c++ project such as spconv. cumm also contains a python asyncio-based gemm simulator that share same meta program with CUDA code, enable gemm visualization and easy debug experience.

BREAKING CHANGES

  • 0.3.1: tv::DType enum value changed, this will affect all binary code of tv::Tensor user. you must recompile all code if upgrade to cumm >= 0.3.1.

News

Install

Prebuilt

We offer python 3.7-3.11 and cuda 10.2/11.3/11.4/11.7/12.0 prebuilt binaries for linux (manylinux).

We offer python 3.7-3.11 and cuda 10.2/11.3/11.4/11.7/12.0 prebuilt binaries for windows 10/11.

pip install cumm for CPU-only

pip install cumm-cu102 for CUDA 10.2

pip install cumm-cu113 for CUDA 11.3

pip install cumm-cu114 for CUDA 11.4

pip install cumm-cu117 for CUDA 11.7

pip install cumm-cu120 for CUDA 12.0

Build from source for development (JIT, recommend for develop)

WARNING Use code in tags!!! code in main branch may contain bugs.

The c++ code will be built automatically when you change c++ code in project.

Linux

  1. uninstall cumm installed by pip. you must ensure no "cumm" exists in pip list | grep cumm
  2. install build-essential, install CUDA
  3. git clone https://github.com/FindDefinition/cumm, cd ./cumm, git checkout tags/<tag_name>, pip install -e .
  4. in python, import cumm and wait for build finish.

Windows

  1. uninstall spconv and cumm installed by pip. you must ensure no "cumm" exists in pip list | grep cumm
  2. install visual studio 2019 or newer. make sure C++ development component is installed. install CUDA
  3. set powershell script execution policy
  4. start a new powershell, run tools/msvc_setup.ps1
  5. git clone https://github.com/FindDefinition/cumm, cd ./cumm, git checkout tags/<tag_name>, pip install -e .
  6. in python, import cumm and wait for build finish.

Build wheel from source

WARNING Use code in tags!!! code in main branch may contain bugs.

WARNING: If CUMM_CUDA_VERSION is set with a CUDA version, following steps will create a wheel named "cumm-cuxxx", not "cumm", this means you must use cumm-cuxxx in dependency of your project which depend on cumm, not cumm. If CUMM_CUDA_VERSION isn't set, cumm will always built with CUDA, so the CUDA must exists in your system. The wheel name will be cumm even if it is built with cuda.

Linux

It's recommend to build Linux packages in official build docker. Build with CUDA support don't need a real GPU.

Build in Official Docker
  1. select a cuda version. available: CUDA 11.1, 11.3, 11.4, 11.5, 12.0
  2. (Example for CUDA 11.4) git clone https://github.com/FindDefinition/cumm, cd ./cumm, docker run --rm -e PLAT=manylinux2014_x86_64 -e CUMM_CUDA_VERSION=114 -v `pwd`:/io scrin/manylinux2014-cuda:cu114-devel-1.0.0 bash -c "source /etc/bashrc && /io/tools/build-wheels.sh"
Build in your environment
  1. install build-essential, install CUDA
  2. set env for installed cuda version. for example, export CUMM_CUDA_VERSION="11.4". If you want to build CPU-only, run export CUMM_CUDA_VERSION="". If CUMM_CUDA_VERSION isn't set, you need to ensure cuda libraries are inside OS search path, and the built wheel name will be cumm, otherwise cumm-cuxxx
  3. run export CUMM_DISABLE_JIT="1"
  4. run python setup.py bdist_wheel+pip install dists/xxx.whl

Windows 10/11

  1. install visual studio 2019 or newer. make sure C++ development package is installed. install CUDA
  2. set powershell script execution policy
  3. start a new powershell, run tools/msvc_setup.ps1
  4. set env for installed cuda version. for example, $Env:CUMM_CUDA_VERSION = "11.4". If you want to build CPU-only, run $Env:CUMM_CUDA_VERSION = "". . If CUMM_CUDA_VERSION isn't set, you need to ensure cuda libraries are inside OS search path, and the built wheel name will be cumm, otherwise cumm-cuxxx
  5. run $Env:CUMM_DISABLE_JIT = "1"
  6. run python setup.py bdist_wheel+pip install dists/xxx.whl

Contributers

Note

The work is done when the author is an employee at Tusimple.

LICENSE

Apache 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

cumm_cu120-0.6.3-cp312-cp312-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

cumm_cu120-0.6.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

cumm_cu120-0.6.3-cp311-cp311-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

cumm_cu120-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

cumm_cu120-0.6.3-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

cumm_cu120-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

cumm_cu120-0.6.3-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

cumm_cu120-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

cumm_cu120-0.6.3-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

cumm_cu120-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file cumm_cu120-0.6.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for cumm_cu120-0.6.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c81bdf9acf9db19582c29fff95140c2f799c266d0081c958b836a2d3ef1bf290
MD5 22ed57a332c81717f596235d4d90b3bb
BLAKE2b-256 5ca75cf6f4feb41de4fd376b484ed9d41aee69747efbc59ca16ac60548154808

See more details on using hashes here.

File details

Details for the file cumm_cu120-0.6.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cumm_cu120-0.6.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e7c5911ccc99855154f5f2e1dd8602464769847232f8fcef3110b8ab2f5abd4
MD5 f9d34ec924b9926c39b9a6c89b3b5ee4
BLAKE2b-256 cede7e6556d7f2c04c2a317f4c15dd2b9e83056ba1dba643b48b72f4e9beff7c

See more details on using hashes here.

File details

Details for the file cumm_cu120-0.6.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for cumm_cu120-0.6.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4ea2995e72f3280d6cad34ea6b0dfa303bd1f8f111edd38735fa9cb209f15e92
MD5 232a1c30094e94783285511f228a6028
BLAKE2b-256 30fb4b9bb764e00c9d65b30978b104f43676ce55e50ce09fbb549612dbdd325a

See more details on using hashes here.

File details

Details for the file cumm_cu120-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cumm_cu120-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ebfb6a8c72d81c5376212cfebd98c05cad0e9d325d956d7aca6307a09f1bddd4
MD5 4b25ba73716051fa1318021e42532297
BLAKE2b-256 0466915d405fc411bd14d5405b537034788ddc087516d766b6767a2bbba59c80

See more details on using hashes here.

File details

Details for the file cumm_cu120-0.6.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for cumm_cu120-0.6.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 714586bd2b9329eba163302c0d34d417b6a79792aa6be9737adea615e3e681a9
MD5 5def9d2c80b4012cb5ccb2bcc897c56f
BLAKE2b-256 c2fa438abc6e0139cd9860895359ccd3476495b8744875df7e144157dc77446a

See more details on using hashes here.

File details

Details for the file cumm_cu120-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cumm_cu120-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a44a0e4443acfa6748bac834f74fab60e8754bd623fa9b6c0bedec9902134afa
MD5 6ae910c66c05ffeea524807915ed90fa
BLAKE2b-256 24e9e44d1c4e52ebbc130bc439b562a212efa409dd22c62ae55a3ad7061395cb

See more details on using hashes here.

File details

Details for the file cumm_cu120-0.6.3-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for cumm_cu120-0.6.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 aea9583f74c0cb0c907d65c33c4f58dcc65dadd9fc11f03c233e61f1667ae5e6
MD5 cc123e677a497f580072c98f5b0ad8d9
BLAKE2b-256 118d254629026807910edd49cded30b4756574b6f245b0beefe1e0c7f2c1e57a

See more details on using hashes here.

File details

Details for the file cumm_cu120-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cumm_cu120-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20ff40fc91a4165ae4891a4eb231491c4298b9b573dd80ab788bb2c75b6dcc47
MD5 60084a2f899f1c095cf887ca3e7e74d8
BLAKE2b-256 977163cc3c8faa49a3e02221eccb52b83c5e21930c71bd0357b2bf95a78e1352

See more details on using hashes here.

File details

Details for the file cumm_cu120-0.6.3-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for cumm_cu120-0.6.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c242e5767ad710cecfee968ee8862fe3d6a9a8566fdc93bf7140e8e60d82d439
MD5 0f70e122e8d5160d1858e718c6514a5f
BLAKE2b-256 028d613fd5dc21158f67b144180aa206e8b048bcf9a4a159fe4ab0abb3130c28

See more details on using hashes here.

File details

Details for the file cumm_cu120-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cumm_cu120-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 056b69985e0c994a3ea2db473391848ecb7ade13d74d2a0e7252dd25494dab41
MD5 1555de8fcfcf59969b6682f6a3dcf074
BLAKE2b-256 f883cb21c01623255259dc5f29754352cacdc6828220f0cf6290b5c97e386287

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page