Skip to main content

configuration tools for XFEL

Project description

XFEL Data Analysis Package for Configuration

This package provides configuration tools for XFEL (X-ray Free Electron Laser) data analysis, including configuration management and I/O utilities.

Features

  • Configuration management using classes and enums
  • Support for reading and writing configuration files in (.INI)
  • Easily extendable for new configurations and settings

Installation

You can install this package via pip:

pip install cuptlib-config

Usage

Basic Configuration

Saving Configuration Settings

Here's an example of how to use the package to save configuration settings:

from cupdlib_config.config_reader import save_config_dict

config_dict = {
    'param': {
        'name': 'sample', 
        'load_dir': 'load', 
        'save_dir': 'save', 
        'image_dir': 'image_dir', 
        'param_dir': 'param_dir'
    }, 
    'path': {
        'beam_energy': 10, 
        'dps': 7.5e-05, 
        'sdd': 1.3, 
        'wavelength': 1239.8419843320025
    }
}

save_config_dict(config_dict, "sample.ini")

Configuration file (sample.ini):

[param]
name = sample
load_dir = load
save_dir = save
image_dir = image_dir
param_dir = param_dir

[path]
beam_energy = 10
dps = 7.5e-05
sdd = 1.3
wavelength = 1239.8419843320025

Loading Configuration Settings

Here's an example of how to use the package to load configuration settings:

import os
from cupdlib_config.configclasses import configclass
from cupdlib_config.config_reader import load_config

@configclass
class ConfigurationPaths:
    load_dir: str = "load_dir"
    save_dir: str = "save_dir"
    param_dir: str = "param_dir"
    image_dir: str = "image_dir"

    def __post_init__(self) -> None:
        self.param_dir = os.path.join(self.save_dir, self.param_dir)
        self.image_dir = os.path.join(self.save_dir, self.image_dir)
        
@configclass
class ConfigurationParameters:
    name: str = "name"
    sdd: float = 1.3
    dps: float = 7.5e-5
    beam_energy: float = 10

    def __post_init__(self) -> None:
        self.wavelength = 12398.419843320025 / self.beam_energy
        
@configclass
class ExperimentConfiguration:
    param: ConfigurationParameters = ConfigurationParameters()
    path: ConfigurationPaths = ConfigurationPaths()

config_dict = load_config(ExperimentConfiguration, "sample.ini")
print(config_dict)

Expected Output:

ExperimentConfiguration(param=ConfigurationParameters(name='sample', sdd=1.3, dps=7.5e-05, beam_energy=10, wavelength=1239.8419843320025), path=ConfigurationPaths(load_dir='load_dir', save_dir='save_dir', param_dir='save_dir\\param_dir', image_dir='save_dir\\image_dir'))

PAL-XFEL Configuration Classes

The package includes several classes to represent different configurations. For example:

  • ConfigurationParameters: Represents parameters like hutch settings, detector settings, etc.
  • ConfigurationPaths: Manages paths for loading and saving data.
  • ExperimentConfiguration: Combines parameters and paths into a single configuration object.

Enums

Enums are used to ensure consistency in setting values:

  • Detector: Enumeration of different detectors.
  • Hutch: Enumeration of different hutches.
  • Xray: Enumeration of X-ray types.
  • Hertz: Enumeration of frequency settings.

Saving PAL-XFEL Configuration Settings

from pal_xfel.config_io import save_palxfel_dict

config_dict = {
    'path': {
        'load_dir': 'your/path', 
        'save_dir': 'your/path',
        'image_dir': 'Image', 
        'mat_dir': 'mat_files', 
        'npz_dir': 'npz_files', 
        'param_dir': 'DataParameter', 
        'tif_dir': 'tif_files'
    },
    'param': {
        'xray': 'HX',
        'detector': 'jungfrau2',
        'pump_setting': '15HZ',
        'hutch': 'eh1',
        'sdd': 1.3,
        'dps': 7.5e-05,
        'beam_energy': 9.7,
        'x1': 0, 
        'x2': 1, 
        'y1': 2, 
        'y2': 3
    }
}

config_file = "palxfel_setting.ini"

save_palxfel_dict(config_dict, config_file)

Sample PAL-XFEL Configuration File

You can find a sample configuration file (sample.ini) in the cupdlib_config directory. Here's an example of its content:

[path]
load_dir = your/path
save_dir = your/path
image_dir = Image
mat_dir = mat_files
npz_dir = npz_files_qbpm
param_dir = DataParameter
tif_dir = tif_files

[param]
xray = HX
detector = jungfrau2
pump_setting = 15HZ
hutch = eh1
sdd = 1.3
dps = 7.5e-05
beam_energy = 9.7
x1 = 0
x2 = 1
y1 = 2
y2 = 3

Paths Configuration

When converting configuration paths into a configuration object, they are combined with the save_dir as shown below:

@configclass
class ConfigurationPaths:
    load_dir: str = ""
    save_dir: str = ""
    param_dir: str = "DataParameter"
    image_dir: str = "Image"
    mat_dir: str = "mat_files"
    npz_dir: str = "npz_files"
    tif_dir: str = "tif_files"

    def __post_init__(self) -> None:
        self.param_dir = os.path.join(self.save_dir, self.param_dir)
        self.image_dir = os.path.join(self.save_dir, self.image_dir)
        self.mat_dir = os.path.join(self.save_dir, self.mat_dir)
        self.npz_dir = os.path.join(self.save_dir, self.npz_dir)
        self.tif_dir = os.path.join(self.save_dir, self.tif_dir)

Loading PAL-XFEL Configuration

from pal_xfel.config_io import load_palxfel_config

palxfel_config = load_palxfel_config("palxfel_setting.ini")
print("palxfel_config: ", palxfel_config)
print("pump_setting: ", palxfel_config.param.pump_setting)
print("mat_dir: ", palxfel_config.path.mat_dir)

Expected Output:

palxfel_config:  ExperimentConfiguration(param=ConfigurationParameters(hutch='eh1', detector='jungfrau2', xray='HX', pump_setting='15HZ', x1=0, x2=1, y1=2, y2=3, sdd=1.3, dps=7.5e-05, beam_energy=9.7, sigma_factor=1, wavelength=1239.8419843320025), path=ConfigurationPaths(load_dir='your/path', save_dir='your/path', param_dir='DataParameter', image_dir='Image', mat_dir='mat_files', npz_dir='npz_files_qbpm', tif_dir='tif_files'))
pump_setting:  15HZ
mat_dir:  mat_files

Contributing

If you would like to contribute to this project, please follow these steps:

  1. Fork the repository.
  2. Create a new branch for your feature or bugfix.
  3. Make your changes.
  4. Submit a pull request with a description of your changes.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Contact

For any questions or issues, please contact:


Acknowledgements

This package was developed as part of the research at the Center for Ultrafast Phase Transformation, Sogang University.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cuptlib_config-0.1.6.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

cuptlib_config-0.1.6-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file cuptlib_config-0.1.6.tar.gz.

File metadata

  • Download URL: cuptlib_config-0.1.6.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for cuptlib_config-0.1.6.tar.gz
Algorithm Hash digest
SHA256 ca7d195157a4f0d42ef7a08608ee84ea4586b025a5a2d6db0044a9cb589cd559
MD5 2d3487f7bbea21f947ec92a2b6841692
BLAKE2b-256 bc3fbe1db2a556f8d14e6e298f8dc44b394df5e215dfeb9f627ef334d16fdcc6

See more details on using hashes here.

File details

Details for the file cuptlib_config-0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for cuptlib_config-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 a2eea08f56beada98306a8b6bb1c545033a7436386c3a0540d2428ad0910b249
MD5 5ff915bacf368f80498f6c7732d66b43
BLAKE2b-256 2bbe2210342e45e5b557f2b6766c9510356cd9056fec77036f0ec25e5d983439

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page