Skip to main content

configuration tools for XFEL

Project description

XFEL Data Analysis Package for Configuration

This package provides configuration tools for XFEL (X-ray Free Electron Laser) data analysis, including configuration management and I/O utilities.

Features

  • Configuration management using classes and enums
  • Support for reading and writing configuration files in (.INI)
  • Easily extendable for new configurations and settings

Installation

You can install this package via pip:

pip install cuptlib-config

Usage

Basic Configuration

Saving Configuration Settings

Here's an example of how to use the package to save configuration settings:

from cupdlib_config.config_reader import save_config_dict

config_dict = {
    'param': {
        'name': 'sample', 
        'load_dir': 'load', 
        'save_dir': 'save', 
        'image_dir': 'image_dir', 
        'param_dir': 'param_dir'
    }, 
    'path': {
        'beam_energy': 10, 
        'dps': 7.5e-05, 
        'sdd': 1.3, 
        'wavelength': 1239.8419843320025
    }
}

save_config_dict(config_dict, "sample.ini")

Configuration file (sample.ini):

[param]
name = sample
load_dir = load
save_dir = save
image_dir = image_dir
param_dir = param_dir

[path]
beam_energy = 10
dps = 7.5e-05
sdd = 1.3
wavelength = 1239.8419843320025

Loading Configuration Settings

Here's an example of how to use the package to load configuration settings:

import os
from cupdlib_config.configclasses import configclass
from cupdlib_config.config_reader import load_config

@configclass
class ConfigurationPaths:
    load_dir: str = "load_dir"
    save_dir: str = "save_dir"
    param_dir: str = "param_dir"
    image_dir: str = "image_dir"

    def __post_init__(self) -> None:
        self.param_dir = os.path.join(self.save_dir, self.param_dir)
        self.image_dir = os.path.join(self.save_dir, self.image_dir)
        
@configclass
class ConfigurationParameters:
    name: str = "name"
    sdd: float = 1.3
    dps: float = 7.5e-5
    beam_energy: float = 10

    def __post_init__(self) -> None:
        self.wavelength = 12398.419843320025 / self.beam_energy
        
@configclass
class ExperimentConfiguration:
    param: ConfigurationParameters = ConfigurationParameters()
    path: ConfigurationPaths = ConfigurationPaths()

config_dict = load_config(ExperimentConfiguration, "sample.ini")
print(config_dict)

Expected Output:

ExperimentConfiguration(param=ConfigurationParameters(name='sample', sdd=1.3, dps=7.5e-05, beam_energy=10, wavelength=1239.8419843320025), path=ConfigurationPaths(load_dir='load_dir', save_dir='save_dir', param_dir='save_dir\\param_dir', image_dir='save_dir\\image_dir'))

PAL-XFEL Configuration Classes

The package includes several classes to represent different configurations. For example:

  • ConfigurationParameters: Represents parameters like hutch settings, detector settings, etc.
  • ConfigurationPaths: Manages paths for loading and saving data.
  • ExperimentConfiguration: Combines parameters and paths into a single configuration object.

Enums

Enums are used to ensure consistency in setting values:

  • Detector: Enumeration of different detectors.
  • Hutch: Enumeration of different hutches.
  • Xray: Enumeration of X-ray types.
  • Hertz: Enumeration of frequency settings.

Saving PAL-XFEL Configuration Settings

from pal_xfel.config_io import save_palxfel_dict

config_dict = {
    'path': {
        'load_dir': 'your/path', 
        'save_dir': 'your/path',
        'image_dir': 'Image', 
        'mat_dir': 'mat_files', 
        'npz_dir': 'npz_files', 
        'param_dir': 'DataParameter', 
        'tif_dir': 'tif_files'
    },
    'param': {
        'xray': 'HX',
        'detector': 'jungfrau2',
        'pump_setting': '15HZ',
        'hutch': 'eh1',
        'sdd': 1.3,
        'dps': 7.5e-05,
        'beam_energy': 9.7,
        'x1': 0, 
        'x2': 1, 
        'y1': 2, 
        'y2': 3
    }
}

config_file = "palxfel_setting.ini"

save_palxfel_dict(config_dict, config_file)

Sample PAL-XFEL Configuration File

You can find a sample configuration file (sample.ini) in the cupdlib_config directory. Here's an example of its content:

[path]
load_dir = your/path
save_dir = your/path
image_dir = Image
mat_dir = mat_files
npz_dir = npz_files_qbpm
param_dir = DataParameter
tif_dir = tif_files

[param]
xray = HX
detector = jungfrau2
pump_setting = 15HZ
hutch = eh1
sdd = 1.3
dps = 7.5e-05
beam_energy = 9.7
x1 = 0
x2 = 1
y1 = 2
y2 = 3

Paths Configuration

When converting configuration paths into a configuration object, they are combined with the save_dir as shown below:

@configclass
class ConfigurationPaths:
    load_dir: str = ""
    save_dir: str = ""
    param_dir: str = "DataParameter"
    image_dir: str = "Image"
    mat_dir: str = "mat_files"
    npz_dir: str = "npz_files"
    tif_dir: str = "tif_files"

    def __post_init__(self) -> None:
        self.param_dir = os.path.join(self.save_dir, self.param_dir)
        self.image_dir = os.path.join(self.save_dir, self.image_dir)
        self.mat_dir = os.path.join(self.save_dir, self.mat_dir)
        self.npz_dir = os.path.join(self.save_dir, self.npz_dir)
        self.tif_dir = os.path.join(self.save_dir, self.tif_dir)

Loading PAL-XFEL Configuration

from pal_xfel.config_io import load_palxfel_config

palxfel_config = load_palxfel_config("palxfel_setting.ini")
print("palxfel_config: ", palxfel_config)
print("pump_setting: ", palxfel_config.param.pump_setting)
print("mat_dir: ", palxfel_config.path.mat_dir)

Expected Output:

palxfel_config:  ExperimentConfiguration(param=ConfigurationParameters(hutch='eh1', detector='jungfrau2', xray='HX', pump_setting='15HZ', x1=0, x2=1, y1=2, y2=3, sdd=1.3, dps=7.5e-05, beam_energy=9.7, sigma_factor=1, wavelength=1239.8419843320025), path=ConfigurationPaths(load_dir='your/path', save_dir='your/path', param_dir='DataParameter', image_dir='Image', mat_dir='mat_files', npz_dir='npz_files_qbpm', tif_dir='tif_files'))
pump_setting:  15HZ
mat_dir:  mat_files

Contributing

If you would like to contribute to this project, please follow these steps:

  1. Fork the repository.
  2. Create a new branch for your feature or bugfix.
  3. Make your changes.
  4. Submit a pull request with a description of your changes.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Contact

For any questions or issues, please contact:


Acknowledgements

This package was developed as part of the research at the Center for Ultrafast Phase Transformation, Sogang University.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cuptlib_config-0.1.2.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

cuptlib_config-0.1.2-py3-none-any.whl (9.4 kB view details)

Uploaded Python 3

File details

Details for the file cuptlib_config-0.1.2.tar.gz.

File metadata

  • Download URL: cuptlib_config-0.1.2.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for cuptlib_config-0.1.2.tar.gz
Algorithm Hash digest
SHA256 d75bdc47825866796a65777dfd777797fead4291066dd56aa48a68a75365f040
MD5 ad192a8448293558e73673e895f424be
BLAKE2b-256 f9386c99b20502806596c25506a358444733045815bb6791467f8ac7b51d6700

See more details on using hashes here.

File details

Details for the file cuptlib_config-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for cuptlib_config-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c94da11d1a4f30a9746a3130e3b6077eda22a1b42e3eacd0e155dc76438df40b
MD5 907bdd8f00cf70a8b631f871d353c777
BLAKE2b-256 cbcfdfa941e9773b982fdbdf323fb32ee9ce349bf0f21763d05e9382c08f735f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page