Skip to main content

configuration tools for XFEL

Project description

XFEL Data Analysis Package for Configuration

This package provides configuration tools for XFEL (X-ray Free Electron Laser) data analysis, including configuration management and I/O utilities.

Features

  • Configuration management using classes and enums
  • Support for reading and writing configuration files in (.INI)
  • Easily extendable for new configurations and settings

Installation

You can install this package via pip:

pip install cuptlib-config

Usage

Basic Configuration

Saving Configuration Settings

Here's an example of how to use the package to save configuration settings:

from cupdlib_config.config_reader import save_config_dict

config_dict = {
    'param': {
        'name': 'sample', 
        'load_dir': 'load', 
        'save_dir': 'save', 
        'image_dir': 'image_dir', 
        'param_dir': 'param_dir'
    }, 
    'path': {
        'beam_energy': 10, 
        'dps': 7.5e-05, 
        'sdd': 1.3, 
        'wavelength': 1239.8419843320025
    }
}

save_config_dict(config_dict, "sample.ini")

Configuration file (sample.ini):

[param]
name = sample
load_dir = load
save_dir = save
image_dir = image_dir
param_dir = param_dir

[path]
beam_energy = 10
dps = 7.5e-05
sdd = 1.3
wavelength = 1239.8419843320025

Loading Configuration Settings

Here's an example of how to use the package to load configuration settings:

import os
from cupdlib_config.configclasses import configclass
from cupdlib_config.config_reader import load_config

@configclass
class ConfigurationPaths:
    load_dir: str = "load_dir"
    save_dir: str = "save_dir"
    param_dir: str = "param_dir"
    image_dir: str = "image_dir"

    def __post_init__(self) -> None:
        self.param_dir = os.path.join(self.save_dir, self.param_dir)
        self.image_dir = os.path.join(self.save_dir, self.image_dir)
        
@configclass
class ConfigurationParameters:
    name: str = "name"
    sdd: float = 1.3
    dps: float = 7.5e-5
    beam_energy: float = 10

    def __post_init__(self) -> None:
        self.wavelength = 12398.419843320025 / self.beam_energy
        
@configclass
class ExperimentConfiguration:
    param: ConfigurationParameters = ConfigurationParameters()
    path: ConfigurationPaths = ConfigurationPaths()

config_dict = load_config(ExperimentConfiguration, "sample.ini")
print(config_dict)

Expected Output:

ExperimentConfiguration(param=ConfigurationParameters(name='sample', sdd=1.3, dps=7.5e-05, beam_energy=10, wavelength=1239.8419843320025), path=ConfigurationPaths(load_dir='load_dir', save_dir='save_dir', param_dir='save_dir\\param_dir', image_dir='save_dir\\image_dir'))

PAL-XFEL Configuration Classes

The package includes several classes to represent different configurations. For example:

  • ConfigurationParameters: Represents parameters like hutch settings, detector settings, etc.
  • ConfigurationPaths: Manages paths for loading and saving data.
  • ExperimentConfiguration: Combines parameters and paths into a single configuration object.

Enums

Enums are used to ensure consistency in setting values:

  • Detector: Enumeration of different detectors.
  • Hutch: Enumeration of different hutches.
  • Xray: Enumeration of X-ray types.
  • Hertz: Enumeration of frequency settings.

Saving PAL-XFEL Configuration Settings

from pal_xfel.config_io import save_palxfel_dict

config_dict = {
    'path': {
        'load_dir': 'your/path', 
        'save_dir': 'your/path',
        'image_dir': 'Image', 
        'mat_dir': 'mat_files', 
        'npz_dir': 'npz_files', 
        'param_dir': 'DataParameter', 
        'tif_dir': 'tif_files'
    },
    'param': {
        'xray': 'HX',
        'detector': 'jungfrau2',
        'pump_setting': '15HZ',
        'hutch': 'eh1',
        'sdd': 1.3,
        'dps': 7.5e-05,
        'beam_energy': 9.7,
        'x1': 0, 
        'x2': 1, 
        'y1': 2, 
        'y2': 3
    }
}

config_file = "palxfel_setting.ini"

save_palxfel_dict(config_dict, config_file)

Sample PAL-XFEL Configuration File

You can find a sample configuration file (sample.ini) in the cupdlib_config directory. Here's an example of its content:

[path]
load_dir = your/path
save_dir = your/path
image_dir = Image
mat_dir = mat_files
npz_dir = npz_files_qbpm
param_dir = DataParameter
tif_dir = tif_files

[param]
xray = HX
detector = jungfrau2
pump_setting = 15HZ
hutch = eh1
sdd = 1.3
dps = 7.5e-05
beam_energy = 9.7
x1 = 0
x2 = 1
y1 = 2
y2 = 3

Paths Configuration

When converting configuration paths into a configuration object, they are combined with the save_dir as shown below:

@configclass
class ConfigurationPaths:
    load_dir: str = ""
    save_dir: str = ""
    param_dir: str = "DataParameter"
    image_dir: str = "Image"
    mat_dir: str = "mat_files"
    npz_dir: str = "npz_files"
    tif_dir: str = "tif_files"

    def __post_init__(self) -> None:
        self.param_dir = os.path.join(self.save_dir, self.param_dir)
        self.image_dir = os.path.join(self.save_dir, self.image_dir)
        self.mat_dir = os.path.join(self.save_dir, self.mat_dir)
        self.npz_dir = os.path.join(self.save_dir, self.npz_dir)
        self.tif_dir = os.path.join(self.save_dir, self.tif_dir)

Loading PAL-XFEL Configuration

from pal_xfel.config_io import load_palxfel_config

palxfel_config = load_palxfel_config("palxfel_setting.ini")
print("palxfel_config: ", palxfel_config)
print("pump_setting: ", palxfel_config.param.pump_setting)
print("mat_dir: ", palxfel_config.path.mat_dir)

Expected Output:

palxfel_config:  ExperimentConfiguration(param=ConfigurationParameters(hutch='eh1', detector='jungfrau2', xray='HX', pump_setting='15HZ', x1=0, x2=1, y1=2, y2=3, sdd=1.3, dps=7.5e-05, beam_energy=9.7, sigma_factor=1, wavelength=1239.8419843320025), path=ConfigurationPaths(load_dir='your/path', save_dir='your/path', param_dir='DataParameter', image_dir='Image', mat_dir='mat_files', npz_dir='npz_files_qbpm', tif_dir='tif_files'))
pump_setting:  15HZ
mat_dir:  mat_files

Contributing

If you would like to contribute to this project, please follow these steps:

  1. Fork the repository.
  2. Create a new branch for your feature or bugfix.
  3. Make your changes.
  4. Submit a pull request with a description of your changes.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Contact

For any questions or issues, please contact:


Acknowledgements

This package was developed as part of the research at the Center for Ultrafast Phase Transformation, Sogang University.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cuptlib_config-0.1.5.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

cuptlib_config-0.1.5-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file cuptlib_config-0.1.5.tar.gz.

File metadata

  • Download URL: cuptlib_config-0.1.5.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for cuptlib_config-0.1.5.tar.gz
Algorithm Hash digest
SHA256 4ecf2c9af44be760361da5122d6645a9844f8eabac939137a8743f534731e046
MD5 441e67fb8f99b9d7e61e68275eea77f7
BLAKE2b-256 8265e09b6312a1c832a68c4fd2bb449361dd4298bf62b6003a8f05a7bb7398a3

See more details on using hashes here.

File details

Details for the file cuptlib_config-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for cuptlib_config-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 5a16ddd95b9a5ddfc674367e292ea129a444e6e8809f516e6daba4d7562df99d
MD5 948dc41fe232c6da529eb190735986ee
BLAKE2b-256 ac46fa1612dd1acbcae2d61042bb249ca51a48789be0ae6bb352cfd00395c365

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page