CuRT allows to generate a specific number of RPS to a webservice. Permite generar un número específico de peticiones por segundo a un servicio web.
Project description
CuRT
Table of contents
Introduction
Custom RPS Tester is a tool to make specific requests per second to a webservice.
Requirements
-
Python version
- Python 3
-
Modules
- Pandas 1.5.2
- Plotly 5.11.0
- Requests 2.28.1
Get CuRT
pip install curt
Configuration
Git repository CuRT.py file is just a main file example.
Example
There are two file in ejemplos directory. properties.py
file has example variables for CuRT.py file (i.e. host for https://jsonplaceholder.typicode.com/posts
). post.json
file is a sample json file for host.
In this example, the main file is CuRT.py
, and it can import properties.py
file:
try:
from resources import properties as p
except (ModuleNotFoundError, ImportError):
print('Error: Propiedades no encontradas.')
CuRT can be imported too:
from curt import dictionary_creator
from curt import threads_manager
from curt import reports
from curt import simple_rest
The HTTP methods to be used must be defined, and the request can be made using the imported post_request
functions for POST
requests, and get_request
for GET
requests.
Since the responses for each request are generated independently, there must be a way to store them. In the example a df_list
is created where each request made is added. The dictionary_creator
module contains a single function, which creates a dictionary taking the start time, end time, the json method used and the response obtained, so that, joining everything together, the function declaration part for the methods to be consumed would look something like this in the CuRT.py
:
df_list = []
def post_ex():
start = dt.datetime.now()
# Método:
json_method = "/posts"
# Ubicación de la petición:
request_file = 'resources/post.json'
with open(request_file) as json_file:
payload = json.load(json_file)
# POST request
response = simple_rest.post_request(p.HOST + json_method, payload, p.HEADERS)
end = dt.datetime.now()
df_list.append(dictionary_creator.new_dict(start, end, json_method, response))
def get_ex():
start = dt.datetime.now()
# Método:
json_method = "/posts/1"
# POST request
response = simple_rest.get_request(p.HOST + json_method, p.HEADERS)
end = dt.datetime.now()
df_list.append(dictionary_creator.new_dict(start, end, json_method, response))
CuRT consumes the methods of the indicated web service and then generates a report with the results obtained. As all the tools to do this are included within CuRT itself, then they can be used to generate reports based on a previous .csv file. So in the example there are two functions that generate a report: do_test
and generate_html
.
The reports
module contains only one function, called loadtest
, which is the one that contains the main functionality of the tool: making the reports. So regardless of what the data source is, it is this method that must be consumed to generate the report.
The module that is in charge of loadtesting as such is threads_manager
. It contains a single function that needs three values: the duration of the test in seconds, the functions that perform consume the web service and the number of requests per second.
Putting these together, the functions look like this:
def hacer_pruebas(length, test_name, dark_mode, base_dir, functions, rps):
print('## Custom RPS Tester ##')
print('# Tester #')
start_time = dt.datetime.now()
threads_manager.start_threads(int(length), functions, int(rps))
end_time = dt.datetime.now()
df = pd.DataFrame(df_list)
report_dir = test_name + '_' + str(dt.datetime.now().timestamp())
dir_name = base_dir + '/' + report_dir
if not os.path.exists(dir_name):
os.makedirs(dir_name)
df.to_csv(dir_name + '/data.csv', index=False, encoding='utf-8-sig')
df.sort_values(by='End', inplace=True)
reports.loadtest(dark_mode=dark_mode, dir_name=dir_name, functions=functions, df=df, start_time=start_time,
end_time=end_time, testing=True)
def generar_html(dark_mode, dir_name, csv_location):
print('## Custom RPS Tester ##')
print('# Generador de reportes #')
print('##########################################################################')
if dir_name == 'NULL':
dir_name = os.getcwd()
print('Cargando archivo: ' + csv_location)
df = pd.read_csv(csv_location, encoding='utf-8')
print('Hecho.')
print('##########################################################################')
function_names = df['MethodName'].drop_duplicates().tolist()
functions = []
for function in function_names:
functions.append(globals()[function])
datetime_format = '%Y-%m-%d %H:%M:%S.%f'
start_time = dt.datetime.strptime(df['Start'].min(), datetime_format)
end_time = dt.datetime.strptime(df['End'].max(), datetime_format)
df.sort_values(by='End', inplace=True)
reports.loadtest(dark_mode=dark_mode, dir_name=dir_name, functions=functions, df=df, start_time=start_time,
end_time=end_time, testing=False)
The testing
flag is used to indicate the name of the report. For a new report, the final file will be index.html
. For a report based on previous data, the final file will be index-[timestamp].html
.
Finally, the main function will define which function will be called, so there are two possibilities:
- The loadtest is performed and then the report is generated:
def main():
length = 20
rps = 20
test_name = 'Ejemplo'
base_dir = 'Reports'
functions = [post_ex, get_ex]
dark_mode = True
hacer_pruebas(length=length, test_name=test_name, dark_mode=dark_mode, base_dir=base_dir, functions=functions, rps=rps)
- The report is made based on existing data:
def main():
dir_name = p.DIRECTORY + '/CuRT/Reports/Ejemplo_1670629990.446974'
csv_location = dir_name + '/data.csv'
dark_mode = True
generar_html(dark_mode=dark_mode, dir_name=dir_name, csv_location=csv_location)
Finally the CuRT.py
file is executed and the report is generated:
Using source code
Installation
Prerequisites
- Install Python 3.
- Add Python installation path to
path
environment variable.
Get started
- Create a virtual environment (
pipenv
,virtualenv
, etc.). - Activate the virtual environment.
- Install required modules (
requirements.txt
):
pip install -r requirements.txt
Maintenance
Current developers who maintain the code:
- Jahaziel Alvarez (jahaziel.alvarez@pm.me)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file curt-0.0.4.tar.gz
.
File metadata
- Download URL: curt-0.0.4.tar.gz
- Upload date:
- Size: 16.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1372f0d157c4485f817bc32b74a6b3a1ab40d5c2b0a9d560092d3dab684bb7b1 |
|
MD5 | bd707619bd1e24b12f60630c752b2ff0 |
|
BLAKE2b-256 | 2cb6dfda04743d783637843e7222596c324dce85de1ca8c8ce6887121ebaff71 |
File details
Details for the file curt-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: curt-0.0.4-py3-none-any.whl
- Upload date:
- Size: 16.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4327be606557ad2ac53ea5f3ec8b976c025452d9727c765efdb20ecceee5025 |
|
MD5 | 30d08e83ba91bd1f27659cc9a1234c90 |
|
BLAKE2b-256 | 0f0de03c274f1bb3e723ba6817270409fec76ed4674a7239184cfd9eb9505803 |