Skip to main content

Custom Deep Learning

Project description

Custom Deep Learning

  • Create a customized Feedforward Neural Network
    • Available options:
      • Weight initialization: Random, Xavier, He
      • Activation functions: Identity, Sigmoid, Softmax, Tanh, ReLU
      • Loss functions: MSE, Cross Entropy
      • Optimizers: GD, Momentum based GD, Nesterov accerelated GD
      • Learning mode: online, mini-batch, batch
  • Refer to the documentation of any class/method by using help(class/method) Eg: help(FNN), help(FNN.compile)
  • For a high-level overview of the underlying theory refer:

Installation

$ [sudo] pip3 install customdl

Development Installation

$ git clone https://github.com/Taarak9/Custom-DL.git

Usage

>>> from customdl import FNN

Handwritten Digit Recognition example

import numpy as np
from matplotlib import pyplot as plt
from mnist_loader import load_data_wrapper 
from customdl import FNN

# MNIST data split
training_data, validation_data, test_data = load_data_wrapper()

# Loss function: Cross Entropy
hdr = FNN(784, "ce")
hdr.add_layer(80, "sigmoid")
hdr.add_layer(10, "sigmoid")
hdr.compile()
hdr.fit(training_data, validation_data)
hdr.accuracy(test_data)

The mnist_loader used could be found here.

Features to be added

  • Plots for monitoring loss and accuracy over epochs
  • Regularization techniques: L1, L2, dropout
  • Optimizers: Adam, RMSProp
  • RBF NN

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

customdl-1.0.15.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

customdl-1.0.15-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file customdl-1.0.15.tar.gz.

File metadata

  • Download URL: customdl-1.0.15.tar.gz
  • Upload date:
  • Size: 8.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.9

File hashes

Hashes for customdl-1.0.15.tar.gz
Algorithm Hash digest
SHA256 30258ed7836967a42d82e609b8196bcb24ae4d6dba69be817d0908b81c16ec96
MD5 ce8c4d0cd0cf1d8fa02edb8b1850739d
BLAKE2b-256 1537c3575302c5750cba1c68425e2477fee65c22c0f2002c9c08581f920330fb

See more details on using hashes here.

File details

Details for the file customdl-1.0.15-py3-none-any.whl.

File metadata

  • Download URL: customdl-1.0.15-py3-none-any.whl
  • Upload date:
  • Size: 8.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.9

File hashes

Hashes for customdl-1.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 b9c269480041f4c1307f17d38d70746065ad496ccd509de4fa67888f8f1f3550
MD5 db0d2d5c1afee27d27654313a5ba6c80
BLAKE2b-256 819c0f45a54e63949db5ed4b75366c0d0c86950ed644b1dbe6ab72d7dac4bd15

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page