Custom Deep Learning
Project description
Custom Deep Learning
- Create a customized Feedforward Neural Network
- Available options:
- Weight initialization: Random, Xavier, He
- Activation functions: Identity, Sigmoid, Softmax, Tanh, ReLU
- Loss functions: MSE, Cross Entropy
- Optimizers: GD, Momentum based GD, Nesterov accerelated GD
- Learning mode: online, mini-batch, batch
- Available options:
- Refer to the documentation of any class/method by using help(class/method) Eg: help(FNN), help(FNN.compile)
- For a high-level overview of the underlying theory refer:
Installation
$ [sudo] pip3 install customdl
Development Installation
$ git clone https://github.com/Taarak9/Custom-DL.git
Usage
>>> from customdl import FNN
Handwritten Digit Recognition example
import numpy as np
from matplotlib import pyplot as plt
from mnist_loader import load_data_wrapper
from customdl import FNN
# MNIST data split
training_data, validation_data, test_data = load_data_wrapper()
# Loss function: Cross Entropy
hdr = FNN(784, "ce")
hdr.add_layer(80, "sigmoid")
hdr.add_layer(10, "sigmoid")
hdr.compile()
hdr.fit(training_data, validation_data)
hdr.accuracy(test_data)
The mnist_loader used could be found here.
Features to be added
- Plots for monitoring loss and accuracy over epochs
- Regularization techniques: L1, L2, dropout
- Optimizers: Adam, RMSProp
- RBF NN
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
customdl-1.0.15.tar.gz
(8.7 kB
view details)
Built Distribution
File details
Details for the file customdl-1.0.15.tar.gz
.
File metadata
- Download URL: customdl-1.0.15.tar.gz
- Upload date:
- Size: 8.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30258ed7836967a42d82e609b8196bcb24ae4d6dba69be817d0908b81c16ec96 |
|
MD5 | ce8c4d0cd0cf1d8fa02edb8b1850739d |
|
BLAKE2b-256 | 1537c3575302c5750cba1c68425e2477fee65c22c0f2002c9c08581f920330fb |
File details
Details for the file customdl-1.0.15-py3-none-any.whl
.
File metadata
- Download URL: customdl-1.0.15-py3-none-any.whl
- Upload date:
- Size: 8.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b9c269480041f4c1307f17d38d70746065ad496ccd509de4fa67888f8f1f3550 |
|
MD5 | db0d2d5c1afee27d27654313a5ba6c80 |
|
BLAKE2b-256 | 819c0f45a54e63949db5ed4b75366c0d0c86950ed644b1dbe6ab72d7dac4bd15 |