Skip to main content

Data transformations for the Engineering Lab2 Feature-Store-for-ML

Project description

Customer segmentation toolkit

Data transformations toolkit made by Team #2 for the MLOps Engineering Lab #2 "Feature Store for ML".

Installation

pip install -U customer-segmentation-toolkit

Usage

import pandas as pd
from pathlib import Path

01. Load and split dataset

import datetime
from customer_segmentation_toolkit.load_split import load_data_csv, split_by_invoice_date

ONLINEOFFLINE_DATE_SPLIT = datetime.date(2011,10,1)

# Loading original dataset
df = load_data_csv('../data/data.csv')
print(f'Loaded dataset, shape: {df.shape}')

# Splitting dataset to offline and online parts
df_offline, df_online = split_by_invoice_date(df, ONLINEOFFLINE_DATE_SPLIT)

print(f'Offline dataset shape: {df_offline.shape}')
print(f'Offline invoices: from {df_offline["InvoiceDate"].min()} to {df_offline["InvoiceDate"].max()}')

print(f'Online dataset shape: {df_online.shape}')
print(f'Online invoices: from {df_online["InvoiceDate"].min()} to {df_online["InvoiceDate"].max()}')
Loaded dataset, shape: (541909, 8)
Offline dataset shape: (370931, 8)
Offline invoices: from 2010-12-01 08:26:00 to 2011-09-30 17:22:00
Online dataset shape: (170978, 8)
Online invoices: from 2011-10-02 10:32:00 to 2011-12-09 12:50:00
# Saving processed data
OUTPUT = Path(f'../data/output/01_data_split_offline_online')
OUTPUT.mkdir(exist_ok=True, parents=True)

df_offline.to_csv(f'{OUTPUT}/no_live_data.csv', index=False)
df_online.to_csv(f'{OUTPUT}/raw_live_data.csv', index=False)
Path(f'{OUTPUT}/onlineoffline_date_split.txt').write_text(str(ONLINEOFFLINE_DATE_SPLIT))

print(f'Output data saved to {OUTPUT}: {[p.name for p in Path(OUTPUT).iterdir()]}')
Output data saved to ../data/output/01_data_split_offline_online: ['onlineoffline_date_split.txt', 'no_live_data.csv', 'raw_live_data.csv']

02. Clean dataset rows

from customer_segmentation_toolkit.load_split import load_data_csv
from customer_segmentation_toolkit.clean_rows import clean_data_rows

# Loading raw offline dataset'
df = load_data_csv('../data/output/01_data_split_offline_online/no_live_data.csv')
print(f'Loaded raw offline dataset, shape: {df.shape}')

# Cleaning the dataset
df_cleaned = clean_data_rows(df)
print(f'Cleaned offline dataset shape: {df.shape}')
Loaded raw offline dataset, shape: (370931, 8)
Cleaned offline dataset shape: (370931, 8)
# Saving processed data
OUTPUT = Path(f'../data/output/02_data_clean_rows')
OUTPUT.mkdir(exist_ok=True, parents=True)

df_cleaned.to_csv(f'{OUTPUT}/no_live_data__cleaned.csv', index=False)

print(f'Output data saved to {OUTPUT}: {[p.name for p in Path(OUTPUT).iterdir()]}')
Output data saved to ../data/output/02_data_clean_rows: ['no_live_data__cleaned.csv']

03. Analyse purchases

import datetime
from customer_segmentation_toolkit.load_split import load_data_csv
from customer_segmentation_toolkit.analyse_purchases import build_product_list

N_PURCHASE_CLUSTERS = 5
TRAINTEST_DATE_SPLIT = datetime.date(2011,8,1)

# Loading cleaned dataset
df_cleaned = load_data_csv('../data/output/02_data_clean_rows/no_live_data__cleaned.csv')
print(f'Loaded cleaned offline dataset, shape: {df_cleaned.shape}')

list_products = build_product_list(df_cleaned)
print(f'Built list of products:')
print(pd.DataFrame(list_products).head())
print('...')
Loaded cleaned offline dataset, shape: (263815, 10)
Built list of products:
         0    1
0    heart  251
1  vintage  195
2      set  194
3      bag  158
4      box  147
...
from customer_segmentation_toolkit.analyse_purchases import build_keywords_matrix

# Building keywords count matrix
THRESHOLD = [0, 1, 2, 3, 5, 10]
matrix = build_keywords_matrix(df_cleaned, list_products, THRESHOLD)
print(f'Built keywords count matrix (shape: {matrix.shape}):')
print(matrix.head())
Built keywords count matrix (shape: (3662, 188)):
   heart  vintage  set  bag  box  glass  christmas  design  candle  flower  \
0      1        0    0    0    0      0          0       0       0       0   
1      0        0    0    0    0      0          0       0       0       0   
2      1        0    0    0    0      0          0       0       0       0   
3      0        0    0    0    0      0          0       0       0       0   
4      1        0    0    0    0      0          0       0       0       0   

   ...  medium  hen  wallet  point  0<.<1  1<.<2  2<.<3  3<.<5  5<.<10  .>10  
0  ...       0    0       0      0      0      0      1      0       0     0  
1  ...       0    0       0      0      0      0      0      1       0     0  
2  ...       0    0       0      0      0      0      0      1       0     0  
3  ...       0    0       0      0      0      0      0      1       0     0  
4  ...       0    0       0      0      0      0      0      1       0     0  

[5 rows x 188 columns]
from customer_segmentation_toolkit.analyse_purchases import compute_purchase_clusters

# Computing purchases clusters via Kmeans
clusters = compute_purchase_clusters(matrix, N_PURCHASE_CLUSTERS)
print(f'Built purchase clusters:')
print(pd.Series(clusters).value_counts())
Built purchase clusters:
1    1117
4     911
0     638
2     566
3     430
dtype: int64
from sklearn.metrics import silhouette_samples, silhouette_score
from customer_segmentation_toolkit.analyse_purchases import plot_silhouette

silhouette_avg = silhouette_score(matrix, clusters)
sample_silhouette_values = silhouette_samples(matrix, clusters)
# Plotting silhouette values
plot_silhouette(N_PURCHASE_CLUSTERS, [-0.07, 0.33], len(matrix), sample_silhouette_values, clusters)

svg

from customer_segmentation_toolkit.analyse_purchases import add_purchase_clusters_info

# Constructing the result DataFrame
df_with_clusters = add_purchase_clusters_info(df_cleaned, clusters, N_PURCHASE_CLUSTERS)
print(f'Added purchase clusters info to the offline cleaned dataset:')
print(f'Shape: {df_with_clusters.shape}')
print(f'Columns: {list(df_with_clusters.columns)}')
Added purchase clusters info to the offline cleaned dataset:
Shape: (13081, 9)
Columns: ['CustomerID', 'InvoiceNo', 'Basket Price', 'categ_0', 'categ_1', 'categ_2', 'categ_3', 'categ_4', 'InvoiceDate']
from customer_segmentation_toolkit.load_split import split_by_invoice_date

# Splitting the new dataset (offline + cluster info) to train+test
df_offline_train, df_offline_test = split_by_invoice_date(df_with_clusters, TRAINTEST_DATE_SPLIT)
print(f'Splitted: train of shape {df_offline_train.shape} + test of shape {df_offline_test.shape}')
Splitted: train of shape (10054, 9) + test of shape (3027, 9)
# Saving processed data

OUTPUT = Path(f'../data/output/03_data_compute_description_keywords')
OUTPUT.mkdir(exist_ok=True, parents=True)

matrix.to_csv(f'{OUTPUT}/no_live_data__cleaned__keywords.csv', index=False)
df_offline_train.to_csv(f'{OUTPUT}/no_live_data__cleaned__purchase_clusters__train.csv', index=False)
df_offline_test.to_csv(f'{OUTPUT}/no_live_data__cleaned__purchase_clusters__test.csv', index=False)

pd.DataFrame(THRESHOLD, columns=['threshold']).to_csv(f'{OUTPUT}/threshold.csv', index=False)

Path(f'{OUTPUT}/n_purchase_clusters.txt').write_text(str(N_PURCHASE_CLUSTERS))
Path(f'{OUTPUT}/traintest_date_split.txt').write_text(str(TRAINTEST_DATE_SPLIT))

print(f'Output data saved to {OUTPUT}: {[p.name for p in Path(OUTPUT).iterdir()]}')
Output data saved to ../data/output/03_data_compute_description_keywords: ['no_live_data__cleaned__keywords.csv', 'no_live_data__cleaned__purchase_clusters__test.csv', 'threshold.csv', 'n_purchase_clusters.txt', 'traintest_date_split.txt', 'no_live_data__cleaned__purchase_clusters__train.csv']

04. Analyse customer categories

from customer_segmentation_toolkit.load_split import load_data_csv

N_CUSTOMER_CLUSTERS = 11
SELECTED_CUSTOMERS_CATEG_THRESHOLD = 40

# Loading cleaned offline train dataset
DATA = '../data/output/03_data_compute_description_keywords'
N_PURCHASE_CLUSTERS = int(Path(f'{DATA}/n_purchase_clusters.txt').read_text().strip())

basket_price = load_data_csv(f'{DATA}/no_live_data__cleaned__purchase_clusters__train.csv')
print(f'Loaded purchase clusters data of shape: {basket_price.shape}')
print(basket_price.head())
print('...')
Loaded purchase clusters data of shape: (10054, 9)
  CustomerID  InvoiceNo  Basket Price  categ_0  categ_1  categ_2  categ_3  \
0      12347     537626        711.79    83.40   187.20   293.35   124.44   
1      12347     542237        475.39    53.10   168.75   169.20     0.00   
2      12347     549222        636.25    71.10   369.15   115.00     0.00   
3      12347     556201        382.52    78.06    74.40   168.76    19.90   
4      12348     539318        892.80     0.00   414.00     0.00     0.00   

   categ_4                   InvoiceDate  
0    23.40 2010-12-07 14:57:00.000001024  
1    84.34 2011-01-26 14:29:59.999999744  
2    81.00 2011-04-07 10:42:59.999999232  
3    41.40 2011-06-09 13:01:00.000000256  
4   478.80 2010-12-16 19:09:00.000000000  
...
from customer_segmentation_toolkit.analyse_customers import build_transactions_per_user

# Building transactions per user
transactions_per_user = build_transactions_per_user(basket_price, n_purchase_clusters=N_PURCHASE_CLUSTERS)
print(f'Built transactions per user, shape: {transactions_per_user.shape}')
print(transactions_per_user.head())
print('...')
Built transactions per user, shape: (3143, 13)
  CustomerID  count     min     max        mean      sum    categ_0  \
0      12347      4  382.52  711.79  551.487500  2205.95  12.949523   
1      12348      3  227.44  892.80  495.746667  1487.24   0.000000   
2      12350      1  334.40  334.40  334.400000   334.40  27.900718   
3      12352      4  144.35  840.30  360.370000  1441.48   3.683714   
4      12353      1   89.00   89.00   89.000000    89.00  19.887640   

     categ_1    categ_2    categ_3    categ_4  LastPurchase  FirstPurchase  
0  36.242889  33.831682   6.543213  10.432693            52            236  
1  54.059869   0.000000   0.000000  45.940131           117            227  
2  60.406699   0.000000   0.000000  11.692584           179            179  
3  77.977495   5.771846  11.859339   0.707606           131            165  
4  13.033708   0.000000  67.078652   0.000000            73             73  
...
from customer_segmentation_toolkit.analyse_customers import (
    plot_customers_pca,
    convert_customers_df_to_np,
    analyse_customers_pca,
)

# Analysing customers distribution via PCA
matrix = convert_customers_df_to_np(transactions_per_user, N_PURCHASE_CLUSTERS)
scaled_matrix, pca = analyse_customers_pca(matrix)

plot_customers_pca(matrix, pca)

svg

from customer_segmentation_toolkit.analyse_customers import compute_customer_clusters

# Computing customers clusters via Kmeans
clusters_clients = compute_customer_clusters(scaled_matrix, N_CUSTOMER_CLUSTERS)
print('Computed customers clusters via Kmeans:')
display(pd.Series(clusters_clients).value_counts())
Computed customers clusters via Kmeans:



7     1186
6      475
0      305
3      276
8      239
9      235
1      226
4      152
2       32
5       10
10       7
dtype: int64
from sklearn.metrics import silhouette_samples, silhouette_score
from customer_segmentation_toolkit.analyse_purchases import plot_silhouette

silhouette_avg = silhouette_score(scaled_matrix, clusters_clients)
sample_silhouette_values = silhouette_samples(scaled_matrix, clusters_clients)

# Plotting silhouette values
plot_silhouette(N_CUSTOMER_CLUSTERS, [-0.15, 0.55], len(scaled_matrix), sample_silhouette_values, clusters_clients)

svg

from customer_segmentation_toolkit.analyse_customers import plot_customer_categories

# Plotting customers categories
plot_customer_categories(scaled_matrix, clusters_clients, N_CUSTOMER_CLUSTERS)

svg

from customer_segmentation_toolkit.analyse_customers import add_customer_clusters_info

# Constructing the result dataset
merged_df = add_customer_clusters_info(transactions_per_user, clusters_clients)
print(f'Constructed the result dataset:')
print(f'Shape: {merged_df.shape}')
print(f'Columns: {list(merged_df.columns)}')
Constructed the result dataset:
Shape: (3143, 14)
Columns: ['CustomerID', 'count', 'min', 'max', 'mean', 'sum', 'categ_0', 'categ_1', 'categ_2', 'categ_3', 'categ_4', 'LastPurchase', 'FirstPurchase', 'cluster']
from customer_segmentation_toolkit.analyse_customers import compute_aggregated_customer_clusters_info

# Constructing the aggregated cluster info dataset
selected_customers_df = compute_aggregated_customer_clusters_info(merged_df, N_PURCHASE_CLUSTERS, N_CUSTOMER_CLUSTERS,
                                                                  categ_threshold=SELECTED_CUSTOMERS_CATEG_THRESHOLD)
print('Constructed the aggregated cluster info:')
print(f'Shape: {selected_customers_df.shape}')
print(f'Columns: {list(selected_customers_df.columns)}')
Constructed the aggregated cluster info:
Shape: (11, 14)
Columns: ['cluster', 'count', 'min', 'max', 'mean', 'sum', 'categ_0', 'categ_1', 'categ_2', 'categ_3', 'categ_4', 'LastPurchase', 'FirstPurchase', 'size']
# Saving processed data
OUTPUT = Path(f'../data/output/04_data_analyse_customers')
OUTPUT.mkdir(exist_ok=True, parents=True)

selected_customers_df.to_csv(f'{OUTPUT}/no_live_data__cleaned__purchase_clusters__train__selected_customers_aggregated.csv', index=False)
merged_df.to_csv(f'{OUTPUT}/no_live_data__cleaned__purchase_clusters__train__customer_clusters.csv', index=False)

Path(f'{OUTPUT}/n_customer_clusters.txt').write_text(str(N_CUSTOMER_CLUSTERS))

print(f'Output data saved to {OUTPUT}: {[p.name for p in Path(OUTPUT).iterdir()]}')
Output data saved to ../data/output/04_data_analyse_customers: ['n_customer_clusters.txt', 'no_live_data__cleaned__purchase_clusters__train__selected_customers_aggregated.csv', 'no_live_data__cleaned__purchase_clusters__train__customer_clusters.csv']

05. Download dataset and use it for training

from customer_segmentation_toolkit.data_zoo import download_data_csv
from sklearn.model_selection import train_test_split

# Download dataset from the data_zoo:
csv = 'no_live_data__cleaned__purchase_clusters__train__customer_clusters.csv'
selected_customers: pd.DataFrame = download_data_csv(f'data/output/04_data_analyse_customers/{csv}')

X = selected_customers[['mean', 'categ_0', 'categ_1', 'categ_2', 'categ_3', 'categ_4' ]]
Y = selected_customers['cluster']

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size = 0.8)

X_train.shape, X_test.shape, Y_train.shape, Y_test.shape
((2514, 6), (629, 6), (2514,), (629,))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

customer_segmentation_toolkit-0.1.1.tar.gz (23.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file customer_segmentation_toolkit-0.1.1.tar.gz.

File metadata

  • Download URL: customer_segmentation_toolkit-0.1.1.tar.gz
  • Upload date:
  • Size: 23.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for customer_segmentation_toolkit-0.1.1.tar.gz
Algorithm Hash digest
SHA256 924e3def01b6b271871dda950619cbf8351c1c87ae0d1bc32f63fc5f874308ee
MD5 5d386282e39fafb4c5e22e87c81e6a2d
BLAKE2b-256 2d2d8bd3ca32d327e9177a8dac06726aa57b50ecf0d13181e44ec3014c19dcec

See more details on using hashes here.

File details

Details for the file customer_segmentation_toolkit-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: customer_segmentation_toolkit-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 27.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for customer_segmentation_toolkit-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 89ef6eda3de28687b693c3900197d26c808b40f22fe40b14fa2ae715300ecc9e
MD5 73c35c2dc1cdbe2112466ea8df0dbaa5
BLAKE2b-256 440e1a6573eafb2472d2bdc92662fbe03211fbb54dfd5e1cd325cdda5d2b1361

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page