Tool for validating your computer vision data and model results.
Project description
CV validator
Library to validate computer vision data and models.
Installation
pip install cv-validator
Usage
from cv_validator.checks import *
from cv_validator.core.data import DataSource
from cv_validator.core.suite import BaseSuite
# Create class with data information
train = DataSource(train_image_paths, train_labels, train_predictions, transform=None)
test = DataSource(test_image_paths, test_labels, test_predictions, transform=transform)
# Create suite with different checks
suite = BaseSuite(
checks=[
ImageSize(),
ColorShift(),
BrightnessCheck(need_transformed_img=True),
ClassifierLabelDistribution(),
MetricCheck(),
MetricDiff(),
MetricBySize(),
MetricByRatio(),
HashDuplicates(mode="exact", datasource_type="train"),
]
)
# Run checks
suite.run(task="multiclass", train=train, test=test, num_workers=4)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
cv-validator-0.1.3.tar.gz
(17.3 kB
view hashes)
Built Distribution
Close
Hashes for cv_validator-0.1.3-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 08845ced0d111a66a7012c783e0370b375bebaf400f14e4e056f299197bc4fe2 |
|
MD5 | 19609f5b5ce67429c24bd3fb9246afad |
|
BLAKE2b-256 | ff6eaf39a07eb8e2b1dcd4bcf7a84f96b7376150f18f103039231f25e86b867e |