Skip to main content

Dataset statistical calculation.

Project description

datastate

Dataset statistical calculation.

How to use

from cvds import calc_mean_std, SegLabel

# calculate mean and std from image dataset
msd = calc_mean_std("dataset/image")
print(msd)
"""
output:
{'mean': array([[0.4923597 , 0.4912278 , 0.44912583]], dtype=float32), 'std': array([[0.2124527 , 0.20088832, 0.22155836]], dtype=float32)}
"""

# check label's information
lab_infor = SegLabel("dataset/label", num_classes=4)
print(lab.area)  # area of each category
print(lab.sample)  # number of samples per category
print(lab.index([0, 1, 2, 3]))  # list of path with index category
"""
output:
{'0': 18.079630533854164, '1': 42.78903537326389, '2': 18.866475423177086, '3': 20.26485866970486}
{'0': 5, '1': 8, '2': 4, '3': 6}
['dataset\\label\\45.png', 'dataset\\label\\47.png']
"""

TODO

  • calc neam and std (population).

  • calc area of each category in segmentation task.

  • calc number of samples per category in classification task.

  • calc anchor size and etc in detection task.

  • add other state calc about dataset.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cvds-0.0.1.tar.gz (3.3 kB view details)

Uploaded Source

Built Distribution

cvds-0.0.1-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file cvds-0.0.1.tar.gz.

File metadata

  • Download URL: cvds-0.0.1.tar.gz
  • Upload date:
  • Size: 3.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for cvds-0.0.1.tar.gz
Algorithm Hash digest
SHA256 592d4e2b1ee24f200b6eb18f5ac4a4a5869520a192b595e80aceb9a51f6ff58d
MD5 ccefa7b9d12614eda397bfcf1131cab9
BLAKE2b-256 2ca25804c5e3b16e68e2f598f4687409240e7f74ee5a9910c7c63923b9753d10

See more details on using hashes here.

File details

Details for the file cvds-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: cvds-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 4.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for cvds-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 133e6308a036fdae63ed900d34118adc891b88f748bee7dd4b80a3a0faff6226
MD5 33d087ea5f1f0a58f186f7b5581de278
BLAKE2b-256 b0755a270c9abffe3bd12c32e8ab140e319d081ee73c2e59ad4134f666440d5f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page