Skip to main content

cgMLST analysis tool

Project description

cvmmlst

cvmcgmlst is a tool developed based on the cvmmlst for core genome MLST analysis .

usage: cvmcgmlst -i <genome assemble directory> -o <output_directory>

Author: Qingpo Cui(SZQ Lab, China Agricultural University)

optional arguments:
  -h, --help      show this help message and exit
  -i I            <input_path>: the PATH to the directory of assembled genome files. Could not use with -f
  -f F            <input_file>: the PATH of assembled genome file. Could not use with -i
  -db DB          <database_path>: path of cgMLST database
  -o O            <output_directory>: output PATH
  -minid MINID    <minimum threshold of identity>, default=95
  -mincov MINCOV  <minimum threshold of coverage>, default=90
  -create_db      <initialize the reference database>
  -t T            <number of threads>: default=8
  -v, --version   Display version

Installation

Using pip

pip3 install cvmcgmlst

Using conda

comming soon...

Dependency

  • BLAST+ >2.7.0

you should add BLAST in your PATH

Blast installation

Windows

Following this tutorial: Add blast into your windows PATH

Linux/Mac

The easyest way to install blast is:

conda install -c bioconda blast

Usage

Making your own database

Users could create their own core genome database. All you need is a FASTA file of nucleotide sequences. The sequence IDs should have the format >locus_allelenumber, where locus is the loci name, allelenumber is the number of this allele. The curated core genome fasta file should like this:

>GBAA_RS00015_1
TTGGAAAACATCTCTGATTTATGGAACAGCGCCTTAAAAGAACTCGAAAAAAAGGTCAGT
AAACCAAGTTATGAAACATGGTTAAAATCAACAACCGCACATAATTTAAAGAAAGATGTA
TTAACAATTACGGCTCCAAATGAATTCGCCCGTGATTGGTTAGAATCTCATTATTCAGAG
CTAATTTCGGAAACACTTTATGATTTAACGGGGGCAAAATTAGCTATTCGCTTTATTATT
CCCCAAAGTCAAGCTGAAGAGGAGATTGATCTTCCTCCTGCTAAACCAAATGCAGCACAA
GATGATTCTAATCATTTACCACAGAGTATGCTAAACCCAAAATATACGTTTGATACATTT
GTTATTGGCTCTGGTAACCGTTTTGCTCACGCTGCTTCATTGGCCGTAGCCGAAGCGCCA
GCTAAAGCATATAATCCCCTCTTTATTTATGGGGGAGTTGGACTTGGAAAAACCCATTTA
ATGCATGCAATTGGCCATTATGTAATTGAACATAACCCAAATGCCAAAGTTGTATATTTA
TCATCAGAAAAATTTACAAATGAATTCATTAATTCTATTCGTGATAATAAAGCGGTCGAT
TTTCGTAATAAATACCGCAATGTAGATGTTTTATTGATAGATGATATTCAATTTTTAGCG
GGAAAAGAACAAACTCAAGAAGAGTTTTTCCATACATTCAATGCATTACACGAAGAAAGT
AAACAAATTGTAATTTCCAGTGATCGGCCACCAAAAGAAATTCCAACTTTAGAAGATCGT
CTTCGTTCTCGCTTTGAATGGGGACTCATTACGGATATTACGCCACCAGATTTAGAAACA
CGAATTGCGATTTTACGTAAAAAGGCAAAGGCTGAAGGACTTGATATACCAAATGAGGTC
ATGCTTTATATCGCAAATCAAATCGATTCAAATATTCGTGAACTAGAAGGTGCACTCATC
CGCGTTGTAGCTTATTCATCTTTAATTAACAAGGATATTAATGCTGATTTAGCAGCTGAA
GCACTTAAAGATATTATTCCAAATTCTAAACCAAAAATTATCTCCATTTATGATATTCAA
AAAGCTGTTGGAGATGTTTATCAAGTAAAATTAGAAGATTTCAAGGCGAAAAAGCGCACA
AAGTCAGTTGCCTTTCCTCGCCAAATTGCAATGTATTTGTCACGCGAACTGACAGATTCC
TCCTTACCTAAAATAGGTGAAGAATTTGGTGGACGTGATCATACAACCGTTATCCATGCC
CATGAAAAAATTTCTAAGCTACTTAAGACGGATACGCAATTACAAAAACAAGTTGAAGAA
ATTAACGATATTTTAAAGTAG

The first time when running cvmcgmlst, you should use -create_db parameter to initialize your database. After your own database was created, you could run cvmcgmlst without using -create_db parameter.

You could also create reference database using makeblastdb command.

makeblastdb -hash_index -in reference.fa -dbtype nucl -title cgMLST -parse_seqids

Example

# Single Genome Mode
cvmcgmlst -f /PATH_TO_ASSEBLED_GENOME/sample.fa -create_db -db /PATH_TO_DATABASE/reference.fa -o PATH_TO_OUTPUT

# Batch Mode
cvmcgmlst -i /PATH_TO_ASSEBLED_GENOME_DIR -create_db -db /PATH_TO_DATABASE/reference.fa -o PATH_TO_OUTPUT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cvmcgmlst-0.1.6.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

cvmcgmlst-0.1.6-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file cvmcgmlst-0.1.6.tar.gz.

File metadata

  • Download URL: cvmcgmlst-0.1.6.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.8

File hashes

Hashes for cvmcgmlst-0.1.6.tar.gz
Algorithm Hash digest
SHA256 e9610f3acc56e3581c6d757393921de863a5f9f4752554c9b90a6fcd91791fd4
MD5 6dcad594068e2afe8038c5084dca2249
BLAKE2b-256 b04d56fecd38c4031f5e20c02d227a46209545269f14726e9f60fee715275075

See more details on using hashes here.

File details

Details for the file cvmcgmlst-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: cvmcgmlst-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.8

File hashes

Hashes for cvmcgmlst-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 8f75b9681b3e72cabc35610af099c0d1dfe658b14d6eef9393c2d7a42e099843
MD5 88ee8bd02094492cbbb9eca00d85e486
BLAKE2b-256 ca697b275f45a782026c9a4eb08f0d4bae5df1e3598b0b709cb54e57b2d8883c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page