Fast Use Computer Vision Tools
Project description
# cvnet Build Model for Computer Vision(CV) Neural Network.
## 图像分类
## 图像分割
语义分割
实例分割
全景分割
### 技术演化路径
2010年前,传统分割:1)边缘检测;2)遗传算法
2010-2015年,机器学习:1)随机森林;2)支持向量机
2015年后,深度学习:1)经典分割算法:FCN, U-Net, SegNet, DeepLab; 2)实时分割算法:ENet, LinkNet, BiSeNet, DFANet, Light-Weight RefineNet; 3)RGB-D分割算法:RedNet, RDFNet
### Networks implemented
[PSPNet](https://arxiv.org/abs/1612.01105) - With support for loading pretrained models w/o caffe dependency
[ICNet](https://arxiv.org/pdf/1704.08545.pdf) - With optional batchnorm and pretrained models
[FRRN](https://arxiv.org/abs/1611.08323) - Model A and B
[FCN](https://arxiv.org/abs/1411.4038) - All 1 (FCN32s), 2 (FCN16s) and 3 (FCN8s) stream variants
[U-Net](https://arxiv.org/abs/1505.04597) - With optional deconvolution and batchnorm
[Link-Net](https://codeac29.github.io/projects/linknet/) - With multiple resnet backends
[Segnet](https://arxiv.org/abs/1511.00561) - With Unpooling using Maxpool indices
#### Upcoming
[E-Net](https://arxiv.org/abs/1606.02147)
[RefineNet](https://arxiv.org/abs/1611.06612)
### DataLoaders implemented
[CamVid](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)
[Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/segexamples/index.html)
[ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K/)
[MIT Scene Parsing Benchmark](http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip)
[Cityscapes](https://www.cityscapes-dataset.com/)
### Demo
demo site: https://www.remove.bg/upload
演示效果:
demo1:
<img src=”./docs/7.jpg” width=”600” />
remove background:
<img src=”./docs/7-removebg-preview.png” width=”600” />
demo2:
<img src=”./docs/red_car.png” width=”600” />
remove background:
<img src=”./docs/red_car-removebg-preview.png” width=”600” />
# Reference 1. [ClassyVision](https://github.com/facebookresearch/ClassyVision) 2. [Deep-Learning-Project-Template](https://github.com/L1aoXingyu/Deep-Learning-Project-Template) 3. [pytorch-semseg](https://github.com/meetshah1995/pytorch-semseg) 4. [torchcv](https://github.com/donnyyou/torchcv) 5. [pytorch-cnn-finetune](https://github.com/creafz/pytorch-cnn-finetune) 6. [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file cvnet-0.1.1.tar.gz
.
File metadata
- Download URL: cvnet-0.1.1.tar.gz
- Upload date:
- Size: 96.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cddf34d136fef4f2cddf268c29f75e708914a2d642c27e7b5f86ef3103c14aa4 |
|
MD5 | 7043d50846780aa874de4a553f04516a |
|
BLAKE2b-256 | d0eec2021baf48eabddfc5aa2acc71fbba5df02bd2e17b3ff21689736fda1253 |