Skip to main content

CWB wrapper to extract concordances and collocates

Project description

Collocation and Concordance Computation

Introduction

This module is a wrapper around the IMS Open Corpus Workbench (CWB). Main purpose of the module is to run queries, extract concordance lines, and calculate collocates.

Prerequisites

The module needs a working installation of the CWB and operates on CWB-indexed corpora.

If you want to run queries with more than two anchor points, the module requires CWB version 3.4.16 or later.

Installation

You can install this module with pip from PyPI:

pip3 install cwb-ccc

You can also clone the source from github, cd in the respective folder, and use setup.py:

python3 setup.py install

Corpus Setup

All methods rely on the Corpus class, which establishes the connection to your CWB-indexed corpus:

from ccc import Corpus
corpus = Corpus(
  corpus_name="GERMAPARL1386",
  registry_path='/usr/local/share/cwb/registry/'
)

This will raise a KeyError if the named corpus is not in the specified registry.

If you are using macros and wordlists, you have to store them in a separate folder (with subfolders "wordlists/" and "macros/"). Make sure you specify this folder via lib_path when initializing the corpus.

You can use the cqp_bin to point the module to a specific version of cqp (this is also helpful if cqp is not in your PATH).

By default, the data_path points to "/tmp/ccc-data/". Make sure that "/tmp/" exists and appropriate rights are granted. Otherwise, change the parameter when initializing the corpus.

Usage

Queries and Dumps

The normal starting point for analyzing a corpus is to run a query with the corpus.query() method, which accepts valid CQP queries such as

query = r'"\[" ([pos="NE"] "/"?)+ "\]"'
dump = corpus.query(cqp_query=query)

The result is a Dump object. Its core is a pandas DataFrame (dump.df) multi-indexed by CQP's "match" and "matchend" (similar to a CQP dump). All entries of the DataFrame, including the index, are integers representing corpus positions.

You can provide one or more parameters to define the context around the matches: a parameter context specifying the context window (defaults to 20) and an s-attribute defining the context (context_break). You can specify asymmetric windows via context_left and context_right.

dump = corpus.query(
  cqp_query=query,
  context=20,
  context_break='s'
)

Note that queries may end on a "within" clause, which will limit the matches to regions defined by this structural attribute. If you provide a context_break parameter, the query will be automatically confined by this s-attribute.

You can set CQP's matching strategy ("standard", "longest", "shortest") via the match_strategy parameter.

By default, the result is cached: the query parameters will be used to create an identifier. The resulting Dump object contains the appropriate identifier as attribute name_cache. The resulting subcorpus will be saved to disk by CQP, and the extended dump containing the context put into a cache. This way, the result can be accessed directly by later queries with the same parameters on the same (sub)corpus, without the need for CQP to run again. You can disable caching by providing a name other than "mnemosyne".

We are set up to analyze your query result. Let's start with the frequency breakdown:

print(dump.breakdown())
word freq
[ SPD ] 18
[ CDU / CSU ] 13
[ PDS ] 6

Concordancing

You can directly access concordance lines via the concordance method of the dump. This method returns a dataframe with information about the query matches in context:

lines = dump.concordance()
print(lines)
match matchend context contextend raw
8213 8217 8193 8237 {'cpos': [8193, 8194, 8195, 8196, 8197, 8198, ...
15999 16001 15979 16021 {'cpos': [15979, 15980, 15981, 15982, 15983, 1...
25471 25473 25451 25493 {'cpos': [25451, 25452, 25453, 25454, 25455, 2...
... ... ... ... ...

Column raw contains a dictionary with the following keys:

  • "match" (int): the cpos of the match
  • "cpos" (list): the cpos of all tokens in the concordance line
  • "offset" (list): the offset to match/matchend of all tokens
  • "word" (list): the words of all tokens
  • "anchors" (dict): a dictionary of {anchor: cpos} (see below)

You can create your own formatting from this, or use the form parameter to define how your lines should be formatted ("raw", "simple", "kwic", "dataframes" or "extended"). If form="dataframes" or form="extended", the dataframe contains a column df with each concordance line being formatted as a DataFrame with the cpos of each token as index:

lines = dump.concordance(form="dataframes")
print(lines['df'].iloc[1])
cpos offset word match matchend context contextend
15992 -7 ( False False True False
15993 -6 Beifall False False False False
15994 -5 des False False False False
15995 -4 Abg. False False False False
15996 -3 Dr. False False False False
15997 -2 Peter False False False False
15998 -1 Struck False False False False
15999 0 [ True False False False
16000 0 SPD False False False False
16001 0 ] False True False False
16002 1 ) False False False True

Attribute selection is controlled via the p_show and s_show parameters (lists of p-attributes and s-attributes, respectively):

lines = dump.concordance(
  form="dataframes",
  p_show=['word', 'lemma'],
  s_show=['text_id']
)
context_id 905
context 15992
contextend 16002
df lemma offset word ...
text_role_CWBID 7
text_role mp
print(lines['df'].iloc[1])
cpos lemma offset word match matchend context contextend
15992 ( -7 ( False False True False
15993 Beifall -6 Beifall False False False False
15994 die -5 des False False False False
15995 Abg. -4 Abg. False False False False
15996 Dr. -3 Dr. False False False False
15997 Peter -2 Peter False False False False
15998 Struck -1 Struck False False False False
15999 [ 0 [ True False False False
16000 SPD 0 SPD False False False False
16001 ] 0 ] False True False False
16002 ) 1 ) False False False True

You can decide which and how many concordance lines you want to retrieve by means of the parameters order ("first", "last", or "random") and cut_off. You can also provide a list of matches to get only specific concordance lines.

Anchored Queries

The concordancer detects anchored queries automatically. The following query

dump = corpus.query(
  query = r'@1[pos="NE"]? @2[pos="NE"] "\[" (@3[word="[A-Z]+"]+ "/"?)+ "\]"'
)
lines = dump.concordance(form='dataframes')
print(lines['df'].iloc[1])

thus returns DataFrames with additional columns for each anchor point.

cpos offset word 1 2 3 match matchend context contextend
15992 -5 ( False False False False False True False
15993 -4 Beifall False False False False False False False
15994 -3 des False False False False False False False
15995 -2 Abg. False False False False False False False
15996 -1 Dr. False False False False False False False
15997 0 Peter True False False True False False False
15998 0 Struck False True False False False False False
15999 0 [ False False False False False False False
16000 0 SPD False False True False False False False
16001 0 ] False False False False True False False
16002 1 ) False False False False False False True

Collocation Analyses

After executing a query, you can use the dump.collocates() method to extract collocates for a given window size (symmetric windows around the corpus matches). The result will be a DataFrame with lexical items as index and frequency signatures and association measures as columns.

dump = corpus.query(
  '[lemma="Angela"] [lemma="Merkel"]',
  context=10, context_break='s'
)
collocates = dump.collocates()
print(collocates)
item O11 O12 O21 O22 E11 E12 E21 E22 log_likelihood ...
die 813 4373 12952 131030 478.556326 4707.443674 13286.443674 130695.556326 226.512603 ...
bei 366 4820 991 142991 47.177692 5138.822308 1309.822308 142672.177692 967.728153 ...
( 314 4872 1444 142538 61.118926 5124.881074 1696.881074 142285.118926 574.853985 ...
[ 221 4965 477 143505 24.266786 5161.733214 673.733214 143308.266786 654.834131 ...
) 207 4979 1620 142362 63.517792 5122.482208 1763.482208 142218.517792 218.340710 ...
... ... ... ... ... ... ... ... ... ... ...

By default, collocates are calculated on the "lemma"-layer, assuming that this is an available p-attribute in the corpus. The corresponding parameter is p_query (which will fall back to "word" if the specified attribute is not annotated in the corpus).

For improved performance, all hapax legomena in the context are dropped after calculating the context size. You can change this behaviour via the min_freq parameter.

By default, the dataframe is annotated with "z_score", "t_score", "dice", "log_likelihood", and "mutual_information" (parameter ams). For notation and further information regarding association measures, see collocations.de. Availability of association measures depends on their implementation in the pandas-association-measures package.

The dataframe is sorted by co-occurrence frequency (column "O11"), and only the first 100 most frequently co-occurring collocates are retrieved. You can (and should) change this behaviour via the order and cut_off parameters.

Keyword Analyses

For keyword analyses, you have to define a subcorpus. The natural way of doing so is by selecting text identifiers via spreadsheets or relational databases, or by directly using the annotated s-attributes. If you have collected an appropriate set of attribute values, you can use the corpus.dump_from_s_att() method:

party = {"CDU", "CSU"}
dump = corpus.dump_from_s_att('text_party', party)
keywords = dump.keywords()

Just as with collocates, the result is a DataFrame with lexical items (p_query layer) as index and frequency signatures and association measures as columns.

You can of course also define a subcorpus via a corpus query, e.g.

dump = corpus.query('"SPD" expand to s')
keywords = dump.keywords()

Testing

The module is shipped with a small test corpus ("GERMAPARL8613"), which contains all speeches of the 86th session of the 13th German Bundestag on Feburary 8, 1996. The corpus consists of 149,800 tokens in 7332 paragraphs (s-attribute p with annotation type ("regular" or "interjection")) split into 11,364 sentences (s-attribute s). The p-attributes are pos and lemma. The s-attributes are 1 sitzung (with annotations date, period, session), 10 divs corresponding to different agenda items (annotations desc, n, type, what), and 346 texts corresponding to all speeches (annotations name, parliamentary_group, party, position, role, who).

The module is tested using pytest. Make sure you install all development dependencies:

pip install --dev

You can then

make test

and

make coverage

Acknowledgements

The module relies on cwb-python, thanks to Yannick Versley and Jorg Asmussen for the implementation. Special thanks to Markus Opolka for the implementation of association-measures and for forcing me to write tests.

The test corpus was extracted from the GermaParl corpus (see the PolMine Project); many thanks to Andreas Blätte.

This work was supported by the Emerging Fields Initiative (EFI) of Friedrich-Alexander-Universität Erlangen-Nürnberg, project title Exploring the Fukushima Effect (2017-2020).

Further development of the package is funded by the Deutsche Forschungsgemeinschaft (DFG) within the project Reconstructing Arguments from Noisy Text, grant number 377333057 (2018-2023), as part of the Priority Program Robust Argumentation Machines (SPP-1999).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cwb-ccc-0.9.13.tar.gz (52.1 kB view hashes)

Uploaded Source

Built Distribution

cwb_ccc-0.9.13-py3-none-any.whl (68.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page