Skip to main content

Cython Based Fast FES Calculation Toolkit.

Project description

CyFES:GPU加速高性能数据透视工具

Hex.pm Hex.pm Hex.pm Hex.pm Hex.pm

介绍

这是一个使用Cython+CUDA+Python编写的高性能FES计算软件,可以用于加速数据透视的计算:

$$ E(x)=-kT\log\left(\frac{\sum_{j=1}^Ne^{\frac{V_j}{kT}}e^{-\frac{(x-n_j)^2}{2}}}{N\Pi_i\sqrt{2\pi}\sigma_i}\right) $$

安装

pip安装

本项目可以直接使用pip进行安装:

$ python3 -m pip install cyfes --user --upgrade -i https://pypi.org/simple

源码安装

首先将本仓库clone到本地:

$ git clone https://gitee.com/dechin/cy-fes.git && cd cy-fes/

然后直接运行setup.py进行安装:

$ python3 -m pip install .

安装测试

在本仓库的test路径下存放了一个测试用例,用于测试cyfes是否安装成功。用户可以直接简单的运行:

$ python3 tests/test_path_fes.py 
[0.00902854 0.         0.09338432 0.02065182]
[0.03961432 0.         0.01514649 0.02259541]
[0.00129778 0.         0.02988457 0.0869869 ]
[0.01712827 0.01378975 0.         0.02229569]
[0.0114323  0.03356422 0.         0.0328276 ]

若输出为多个数组,则表示安装成功。也可以使用单元测试运行,但是这需要在本地先安装pytest

$ python3 -m pip install pytest

然后直接在仓库的根目录下运行:

$ py.test
============================ test session starts =============================
platform linux -- Python 3.7.5, pytest-7.4.4, pluggy-1.2.0
rootdir: /home/cy-fes
collected 5 items                                                            

tests/test_path_fes.py .....                                           [100%]

============================= 5 passed in 14.23s =============================

没有报错,则表示安装成功。

使用方法

在安装成功后,可以直接在Python脚本中调用:

import numpy as np
from cyfes import PathFES
np.random.seed(0)

def test_path_fes():
    atoms = 4
    cvs = 10000
    crd = np.random.random((atoms, 3))
    cv = np.random.random((cvs, 3))
    bw = np.random.random(3)
    bias = np.random.random(cvs)-1

    fes = np.asarray(PathFES(crd, cv, bw, bias))
    print (fes)

if __name__ == '__main__':
    test_path_fes()

还可以使用命令行模式:

$ python3 -m cyfes --help
usage: __main__.py [-h] [-i I] [-ic IC] [-ib IB] [-s S] [-e E] [-g G] [-o O]
                   [-no_bias NO_BIAS] [-f32 F32] [-sigma SIGMA]
                   [-device DEVICE]

optional arguments:
  -h, --help        show this help message and exit
  -i I              Set the input record file path.
  -ic IC            Set the cv index of input record file. Default: 0,1,2
  -ib IB            Set the bias index of input record file. Default: 3
  -s S              CV length. Default: None
  -e E              Edge length. Default: 1.0
  -g G              Grid numbers. Default: 10,10,10
  -o O              Set the output FES file path.
  -no_bias NO_BIAS  Do not use the bias from input file. Default: false
  -f32 F32          Use float32. Default: false
  -sigma SIGMA      Sigma value when calculating FES. Default: 0.3
  -device DEVICE    Set the device ids separated with commas. Default: 0

假如我们有一个三维的CV,那么最简单的运行方式为:

$ python3 -m cyfes -i /home/Data/xyz_bias.txt -o ./work_dir/z.cub

那么最后产生的文件内容为:

$ head -n 10 work_dir/z.cub
Generated by CyFES
Total	1000	grids
1	21.6622	19.8498	42.3652
10	6.40465	0	0
10	0	7.02147	0
10	0	0	6.33118
1	1.000000	53.6854	54.9571	74.0211
450	450	450	450	450	450	
450	450	450	450	450	450	
450	450	70.0855	70.848	450	450	

该cube格式的文件可以在支持的软件(如VMD)中进行可视化操作。

已知问题

  1. 使用numpy==1.22.2的版本中会出现ImportError: numpy.core.multiarray failed to import问题。解决方案:升级numpy版本:python3 -m pip install numpy --upgrade
  2. 执行python3 -m cyfes --help报错ModuleNotFoundError: No module named 'cyfes.wrapper',这是因为执行命令的目录下存在名为cyfes的文件夹,需要切换执行命令的位置。
  3. 使用cyfes出现Segmentation fault段错误问题,是因为找不到编译好的动态链接库文件,大概率是系统环境下权限不足,没有site路径的权限,可以使用如下脚本进行检查:
# check_dynamics.py
import os
import site
from pathlib import Path

site_path = Path(site.getsitepackages()[0])
site_file_path = site_path.parent.parent.parent / 'cyfes' / 'libcufes.so'
site_dynamics_path = str(site_file_path)

user_site_path = Path(site.USER_SITE)
user_file_path = user_site_path.parent.parent.parent / 'cyfes' / 'libcufes.so'
user_dynamics_path = str(user_file_path)

if not os.path.exists(site_dynamics_path) and not os.path.exists(user_dynamics_path):
    print ('Check dynamics complete, no libcufes.so file founded!')
else:
    print ('Installation of CyFES success!')

使用python3运行该脚本,即可判断动态链接库是否被正确安装。

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

CyFES-2.9.tar.gz (346.0 kB view details)

Uploaded Source

Built Distributions

CyFES-2.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

CyFES-2.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

CyFES-2.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

CyFES-2.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file CyFES-2.9.tar.gz.

File metadata

  • Download URL: CyFES-2.9.tar.gz
  • Upload date:
  • Size: 346.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for CyFES-2.9.tar.gz
Algorithm Hash digest
SHA256 6d37230a1f172c102c6d5ddcd2ae6ff4033278f5acb55db980ed3fc4d3fce4b1
MD5 0fd2d761808b410e2732b3c553ce2e8b
BLAKE2b-256 c7eac2b77907c4afa60d2353a0de912130f29efa8c878e4bfd98bb586f862268

See more details on using hashes here.

File details

Details for the file CyFES-2.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for CyFES-2.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 597462048ff8a0b1ad744c4e5207e5891e617ae510cbf12ee17be3f6f1544dd8
MD5 7eb16b40508ec3b4642ceccc022e496f
BLAKE2b-256 34d07d388adc6e896d46bdf2d1ca87435ae40eca1cf86a6b201ebab8abc20444

See more details on using hashes here.

File details

Details for the file CyFES-2.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for CyFES-2.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e39f1329bff9ce20b1c89a6f66e7a09fb87f6259dd63cb3da169277a0ae008a7
MD5 3b12a0a949227f0a7df85ee8b83ea679
BLAKE2b-256 b39b8657987c91704683e5bbec2bae1f589fe695581f4fe3d90b398b2c97361e

See more details on using hashes here.

File details

Details for the file CyFES-2.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for CyFES-2.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7f10773eadede28b6c198f0836fb5893c1f2932deeabdd8669f800aaf62f187
MD5 9c9522c7a97bce97193e3794f37a6298
BLAKE2b-256 654052ea73070061825f5ebe2284225a7b87c84a2d1db25131254293763ae20a

See more details on using hashes here.

File details

Details for the file CyFES-2.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for CyFES-2.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 21460ffd7c9522da58c42bb64f72830eea227c54f72044cdf35de9f07fc1c917
MD5 6290a3c31eef662362ecc611df2a1b72
BLAKE2b-256 698646d20fd417dacba593629cba17787bb528cf759db830dcedf09eda9d599e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page